Show simple item record

dc.contributor.authorLin, Rongzhenzh_CN
dc.contributor.authorLiu, Shengqiangzh_CN
dc.contributor.authorLai, Xiaohongzh_CN
dc.contributor.author刘胜强zh_CN
dc.date.accessioned2015-07-22T03:08:07Z
dc.date.available2015-07-22T03:08:07Z
dc.date.issued2013zh_CN
dc.identifier.citationJOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2013,50(4):695-713zh_CN
dc.identifier.otherWOS:000321531700001zh_CN
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/87654
dc.descriptionNational Natural Science Foundation of China [10601042]; Fundamental Research Funds the Central Universities [HIT.NSRIF.2010052]zh_CN
dc.description.abstractWe formulate and study a predator-prey model with non-monotonic functional response type and weak Allee effects on the prey, which extends the system studied by Ruan and Xiao in [Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math. 61 (2001), no. 4, 1445-1472] but containing, an extra term describing weak Allee effects on the prey. We obtain the global dynamics of the model by combining the global qualitative and bifurcation analysis. Our bifurcation analysis of the model indicates that it exhibits numerous kinds of bifurcation phenomena, including the saddle-node bifurcation, the supercritical and the subcritical Hopf bifurcations, and the homoclinic bifurcation, as the values of parameters vary. In the generic case, the model has the bifurcation of cusp type of codimension 2 (i.e., Bogdanov-Takens bifurcation).zh_CN
dc.language.isoen_USzh_CN
dc.publisherKOREAN MATHEMATICAL SOCzh_CN
dc.source.urihttp://dx.doi.org/10.4134/JKMS.2013.50.4.695zh_CN
dc.subjectCONSEQUENCESzh_CN
dc.subjectDYNAMICSzh_CN
dc.subjectSUBJECTzh_CN
dc.subjectMODELSzh_CN
dc.titleBIFURCATIONS OF A PREDATOR-PREY SYSTEM WITH WEAK ALLEE EFFECTSzh_CN
dc.typeArticlezh_CN


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record