Show simple item record

dc.contributor.author冯少荣zh_CN
dc.contributor.author肖荣俊zh_CN
dc.date.accessioned2011-04-26T08:22:47Z
dc.date.available2011-04-26T08:22:47Z
dc.date.issued2008-01zh_CN
dc.identifier.citation中国矿业大学学报.2008(1):105-111zh_CN
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/8035
dc.description.abstract摘要: 针对 “基于密度的带有噪声的空间聚类” (DBSCAN)算法存在的不足 ,提出 “分而治之” 和 高效的并行方法对DBSCAN 算法进行改进.通过对数据进行划分,利用 “分而治之” 思想减少全 局变量 Ep s值的影响;利用并行处理方法和降维技术提高聚类效率 ,降低 DBSCAN 算法对内存 的较高要求;采用增量式处理方式解决数据对象的增加和删除对聚类的影响.结果表明:新方法 有效地解决了DBSCAN 算法存在的问题 ,其聚类效率和聚类效果明显优于传统 DBSCAN 聚类 算法 Abstract : An improved density based spatial clustering of applications with noise (DBSCAN) algorit hm , which can considerably improve cluster quality , is proposed. The algorithm is based on two ideas : dividing and ruling , and ; high performance parallel methods. The idea of dividing and ruling was used to reduce the effect of the global variable Eps by data partition. Parallel processing methods and the technique of reducing dimensionality were used to improve the efficiency of clustering and to reduce the large memory space requirements of the DBSCAN algorithm. Finally , an incremental processing method was applied to determine t he influence on clustering of inserting or deleting data objects. The results show that an implementation of the new met hod solves existing problems treated by the DBSCAN algorithm : Both the efficiency and the cluster quality are better than for the original DBSCAN algorithm.zh_CN
dc.description.sponsorship基金项目: 福建省自然科学基金项目(A0310008) ; 福建省高新技术研究开放计划重点项目(2003H043)zh_CN
dc.language.isozhzh_CN
dc.publisher《中国矿业大学学报》编辑部 zh_CN
dc.relation.ispartofseries100021964 (2008) 0120105207zh_CN
dc.subject聚类zh_CN
dc.subject并行zh_CN
dc.subjectDBSCANzh_CN
dc.subject划分zh_CN
dc.subjectclusteringzh_CN
dc.subjectparallelzh_CN
dc.subjectpartitionzh_CN
dc.subjectDBSCANzh_CN
dc.titleDBSCAN 聚类算法的研究与改进zh_CN
dc.title.alternativeAn Improved DBSCAN Clustering Algorithmzh_CN
dc.typeArticlezh_CN


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record