Show simple item record

dc.contributor.advisor张莲珠
dc.contributor.author王艳
dc.date.accessioned2016-01-13T08:59:26Z
dc.date.available2016-01-13T08:59:26Z
dc.date.issued2013-12-13 10:45:35.0
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/78745
dc.description.abstract曲面是连通的紧$2$维流形. 能画在曲面上使得其边仅在端点处相交的图称为曲面嵌入图. 曲面嵌入图作为一个重要图类,一直是物理学和化学研究领域中受到高度重视的研究模型. 特别是嵌入在曲面上的各类格子图模型,长期以来都是统计物理学家和量子化学家们关注的焦点. 设$C$是图$G$的一个圈,若子图$G- V(C)$含有完美匹配,其中$V(C)$是$C$的顶点集,则称$C$是$G$的一个好圈. 设$C$是图$G$的一个偶圈,规定$C$的一种绕行方向(顺时针或逆时针),$\vec{G}$是$G$的一个定向, 若在$\vec{G}$中,$C$含有奇数条与其绕行方向一致的边, 则称$C$在...
dc.description.abstractA surface $\Sigma$ is a connected compact two dimensional manifold. A graph $G$ is said to be embeddable on $\Sigma$ if it can be drawn on $\Sigma$ without any edges crossing. Graphs embedding on surfaces have attracted the most attention in the fields of statistical physics and quantum chemistry. Especially, there has been a lively interest in lattice models on surfaces. A cycle $C$ of a ...
dc.language.isozh_CN
dc.relation.urihttps://catalog.xmu.edu.cn/opac/openlink.php?strText=38522&doctype=ALL&strSearchType=callno
dc.source.urihttps://etd.xmu.edu.cn/detail.asp?serial=40481
dc.subject曲面嵌入图
dc.subject图的定向
dc.subjectPfaffian定向
dc.subjectPfaffian图
dc.subject圈基
dc.subject圈基的长
dc.subject最短圈基
dc.subjectGraph embedding on a surface
dc.subjectOrientation of a graph
dc.title曲面嵌入图的Pfaffian性和圈基问题研究
dc.title.alternativeOn the Pfaffian property and cycle bases of graphs embedding on surfaces
dc.typethesis
dc.date.replied2013-06-03
dc.description.note学位:理学博士
dc.description.note院系专业:数学科学学院_应用数学
dc.description.note学号:19020100153966


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record