Show simple item record

dc.contributor.authorHu, C. H.zh_CN
dc.contributor.authorZhang, Y.zh_CN
dc.contributor.authorLiu, H. Y.zh_CN
dc.contributor.authorWu, S. Q.zh_CN
dc.contributor.authorYang, Y.zh_CN
dc.contributor.authorZhu, Z. Z.zh_CN
dc.contributor.author吴顺情zh_CN
dc.date.accessioned2013-12-12T02:46:25Z
dc.date.available2013-12-12T02:46:25Z
dc.date.issued2012-12zh_CN
dc.identifier.citationComputational Materials Science, 2012,65165-169zh_CN
dc.identifier.issn0927-0256zh_CN
dc.identifier.otherWOS:000310357400024zh_CN
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/68864
dc.descriptionNational 973 Program of China [2007CB209702, 2011CB935903]; National Natural Science Foundation of China [11004165]zh_CN
dc.description.abstractOpening and tuning of the band gap of bilayer graphene (BLG) is of particular importance for its utilization in nanoelectronics. We presented here the electronic structures of two types of stoichiometrically half-fluorinated BLGs (i.e. C(2)Fs) as well as those under biaxial compressive and tensile strains. Our results reveal that both C(2)Fs are semiconductor with large direct band gaps in their unstrained configurations. Under biaxial compressive strains, the band gaps of both C(2)Fs can be reduced. However, by applying biaxial tensile strains, both C(2)Fs undergo a direct-to-indirect band gap transition. Electronic nature of the strain-tuned band gaps has been discussed. (c) 2012 Elsevier B.V. All rights reserved.zh_CN
dc.language.isoen_USzh_CN
dc.source.urihttp://dx.doi.org/10.1016/j.commatsci.2012.06.038zh_CN
dc.subjectTOTAL-ENERGY CALCULATIONSzh_CN
dc.subjectWAVE BASIS-SETzh_CN
dc.subjectBERRYS PHASEzh_CN
dc.subjectSTATEzh_CN
dc.titleTunable band gap in half-fluorinated bilayer graphene under biaxial strainszh_CN
dc.typeArticlezh_CN


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record