Show simple item record

dc.contributor.authorJin, XAzh_CN
dc.contributor.author金贤安zh_CN
dc.contributor.authorZhang, FJzh_CN
dc.contributor.author张福基zh_CN
dc.contributor.authorDong, FMzh_CN
dc.contributor.authorTay, EG
dc.date.accessioned2013-12-12T02:28:23Z
dc.date.available2013-12-12T02:28:23Z
dc.date.issued2010-07-10zh_CN
dc.identifier.citationElectronic Journal of Combinatorics, 2010,17(1):zh_CN
dc.identifier.issn1077-8926zh_CN
dc.identifier.otherWOS:000280084700001zh_CN
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/66799
dc.description.abstractIn this paper, we present a formula for computing the Tutte polynomial of the signed graph formed from a labeled graph by edge replacements in terms of the chain polynomial of the labeled graph. Then we define a family of ring of tangles links and consider zeros of their Jones polynomials. By applying the formula obtained, Beraha-Kahane-Weisss theorem and Sokals lemma, we prove that zeros of Jones polynomials of (pretzel) links are dense in the whole complex plane.zh_CN
dc.language.isoen_USzh_CN
dc.subjectGRAPHSzh_CN
dc.subjectLINKSzh_CN
dc.subjectFAMILIESzh_CN
dc.subjectKNOTSzh_CN
dc.titleZeros of the Jones polynomial are dense in the complex planezh_CN
dc.typeArticlezh_CN


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record