Show simple item record

dc.contributor.authorZhang, F. J.zh_CN
dc.contributor.authorGuo, X. F.zh_CN
dc.contributor.author郭晓峰zh_CN
dc.date.accessioned2013-12-12T02:28:21Z
dc.date.available2013-12-12T02:28:21Z
dc.date.issued1986zh_CN
dc.identifier.citationJournal of Combinatorial Theory Series B,40(1):1-8zh_CN
dc.identifier.issn0095-8956zh_CN
dc.identifier.otherISI:A1986A609900001zh_CN
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/66762
dc.description.abstractIn this paper we define the Euler tour graph of an Eulerina graph by K-transformations, which was introduced by Kotzig in 1966 (in “Theory of Graphs” (P. Erdös and G. Katona, Eds.), Proc., Colloq., Tihany, Hungary, September, 1966, Akad. Kaido, Hungarian Academy of Sciences, Budapest, 1968) and prove that any edge in an Euler tour graph is in a Hamilton cycle.zh_CN
dc.language.isoen_USzh_CN
dc.titleHAMILTON CYCLES IN EULER TOUR GRAPHzh_CN
dc.typeArticlezh_CN


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record