Show simple item record

dc.contributor.authorQiu, JXzh_CN
dc.contributor.authorShu, CWzh_CN
dc.contributor.author邱建贤zh_CN
dc.date.accessioned2013-12-12T02:28:16Z
dc.date.available2013-12-12T02:28:16Z
dc.date.issued2005zh_CN
dc.identifier.citationSiam Journal on Scientific Computing,26(3):907-929zh_CN
dc.identifier.issn1064-8275zh_CN
dc.identifier.otherWOS:000227761300009zh_CN
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/66692
dc.description.abstractIn [J. Qiu, C.-W. Shu, Runge-Kutta discontinuous Galerkin method using WENO limiters, SIAM Journal on Scientific Computing 26 (2005) 907-929], Qiu and Shu investigated using weighted essentially non-oscillatory (WENO) finite volume methodology as limiters for the Runge-Kutta discontinuous Galerkin (RKDG) methods for solving nonlinear hyperbolic conservation law systems on structured meshes. In this continuation paper, we extend the method to solve two-dimensional problems on unstructured meshes, with the goal of obtaining a robust and high order limiting procedure to simultaneously obtain uniform high order accuracy and sharp, nonoscillatory shock transition for RKDG methods. Numerical results are provided to illustrate the behavior of this procedure. (C) 2008 Elsevier Inc. All rights reserved.zh_CN
dc.language.isoen_USzh_CN
dc.subjectRunge-Kutta discontinuous Galerkin methodzh_CN
dc.subjectlimiterszh_CN
dc.subjectWENO finite volume schemezh_CN
dc.subjecthigh order accuracyzh_CN
dc.titleRunge-Kutta discontinuous Galerkin method using WENO limiterszh_CN
dc.typeArticlezh_CN


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record