• 中文
    • English
  • English 
    • 中文
    • English
  • Login
View Item 
  •   DSpace Home
  • 数学科学学院
  • 数学科学-已发表论文
  • View Item
  •   DSpace Home
  • 数学科学学院
  • 数学科学-已发表论文
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Limit points of eigenvalues of (di)graphs

Thumbnail
Full Text
Limit points of eigenvalues of (di)graphs.pdf (354.1Kb)
Date
2006
Author
Zhang, FJ
Chen, ZB
张福基
Collections
  • 数学科学-已发表论文 [2662]
Show full item record
Abstract
The study on limit points of eigenvalues of undirected graphs was initiated by A. J. Hoffman in 1972. Now we extend the study to digraphs. We prove: 1. Every real number is a limit point of eigenvalues of graphs. Every complex number is a limit point of eigenvalues of digraphs. 2. For a digraph D, the set of limit points of eigenvalues of iterated subdivision digraphs of D is the unit circle in the complex plane if and only if D has a directed cycle. 3. Every limit point of eigenvalues of a set D of digraphs (graphs) is a limit point of eigenvalues of a set <(D)double over dot> of bipartite digraphs (graphs), where <(D)double over dot> consists of the double covers of the members in D. 4. Every limit point of eigenvalues of a set D of digraphs is a limit point of eigenvalues of line digraphs of the digraphs in D. 5. If M is a limit point of the largest eigenvalues of graphs, then -M is a limit point of the smallest eigenvalues of graphs.
Citation
Czechoslovak Mathematical Journal,56(3):895-902
URI
https://dspace.xmu.edu.cn/handle/2288/66318

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies