Show simple item record

dc.contributor.authorShiu, WCzh_CN
dc.contributor.authorLam, PCBzh_CN
dc.contributor.authorZhang, FJzh_CN
dc.contributor.authorZhang, HPzh_CN
dc.contributor.author张福基zh_CN
dc.date.accessioned2013-12-12T02:27:51Z
dc.date.available2013-12-12T02:27:51Z
dc.date.issued2002-05zh_CN
dc.identifier.citationJournal of Mathematical Chemistry, 2002,31(4):405-420zh_CN
dc.identifier.issn0259-9791zh_CN
dc.identifier.otherWOS:000179226800006zh_CN
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/66288
dc.description.abstractAs a general case of molecular graphs of polycyclic alternant hydrocarbons, we consider a plane bipartite graph G with a Kekule pattern (perfect matching). An edge of G is called nonfixed if it belongs to some, but not all, perfect matchings of G. Several criteria in terms of resonant cells for determining whether G is elementary (i.e., without fixed edges) are reviewed. By applying perfect matching theory developed in plane bipartite graphs, in a unified and simpler way we study the decomposition of plane bipartite graphs with fixed edges into normal components, which is shown useful for resonance theory, in particular, cell and sextet polynomials. Further correspondence between the Kekule patterns and Clar (resonant) patterns are revealed.zh_CN
dc.language.isoen_USzh_CN
dc.source.urihttp://dx.doi.org/10.1023/A:1021072722165zh_CN
dc.subjectAROMATIC-HYDROCARBONSzh_CN
dc.subjectRESONANCE ENERGIESzh_CN
dc.subjectHEXAGONAL SYSTEMSzh_CN
dc.subjectFIXED BONDSzh_CN
dc.titleNormal components, Kekule patterns, and Clar patterns in plane bipartite graphszh_CN
dc.typeArticlezh_CN


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record