• 中文
    • English
  • English 
    • 中文
    • English
  • Login
View Item 
  •   DSpace Home
  • 化学化工学院
  • 化学化工-已发表论文
  • View Item
  •   DSpace Home
  • 化学化工学院
  • 化学化工-已发表论文
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

<0001>-Preferential Growth of CdSe Nanowires on Conducting Glass: Template-Free Electrodeposition and Application in Photovoltaics

Thumbnail
Full Text
0001 -Preferential Growth of CdSe Nanowires on Conducting Glass_Template-Free Electrodeposition and Application in Photovoltaics.pdf (2.068Mb)
Date
2010-04
Author
Feng, Zengfang
Zhang, Qiaobao
Lin, Lingling
Quo, Honghui
Zhou, Jianzhang
Lin, Zhonghua
林仲华
Collections
  • 化学化工-已发表论文 [14235]
Show full item record
Abstract
By contrast with the rich, wurztite-related, one-dimensional nanostructure of ZnO and its wide variety of applications, there only exists a few methods for the controlled and designed synthesis of one-dimensional CdSe nanostructures. Here, we describe a low-temperature and directed preparation of CdSe nanowires in a simple one-step, template-free electrochemical deposition. The preparation takes advantage of both the wurtzite structure characteristics and current-induced preferential orientation. High-resolution transmission electron microscopy (TEM) images and selected area electron diffraction (SAED) patterns clearly verify that the prepared CdSe nanowires have a single-crystal wurtzite structure and grow along the [0001] (c-axis). With the discovery of other one-dimensional CdSe nanostructures and CdS nanowires, it is anticipated that this electrochemical synthesis method can be extended to other nanostructures of CdSe and to other II-VI semiconductors and can also be developed into a systematic synthesis for nanostructured semiconductors. The average diameter of the thus prepared CdSe nanowires is larger than those synthesized by chemical vapor deposition (CVD) and solution-liquid-solid (SLS) methods. This may be an advantage in some applications, for example, as the light-harvesting material in photovoltaic cells. Organic/inorganic hybrid photovoltaic cells fabricated with CdSe nanowires and PEDOT:PSS give a good photovoltaic performance, demonstrating the attractive potential of CdSe nanowire applications in photovoltaics.
Citation
Chem. Mater., 2010, 22 (9): 2705–2710
URI
http://dx.doi.org/doi:10.1021/cm901703d
https://dspace.xmu.edu.cn/handle/2288/3732

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies