Show simple item record

dc.contributor.author伍火熊zh_CN
dc.date.accessioned2013-06-04T15:00:41Z
dc.date.available2013-06-04T15:00:41Z
dc.date.issued2005-10-30zh_CN
dc.identifier.citationActa Mathematica Scientia, 2005, (04): 761-770zh_CN
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/18983
dc.description.abstractIn this paper, for the multilinear oscillatory singular integral operatorsTA1,A2,···,Ar defined byTA1,A2,···,Ar f(x) = p.v.RneiP(x,y) ?(x ? y)|x ? y|n+Mrs=1Rms+1(As; x, y)f(y)dy, n 2,where P (x, y) is a nontrivial and real-valued polynomial defined on Rn × Rn, ?(x) ishomogeneous of degree zero on Rn, As(x) has derivatives of order ms in Λ˙βs (0 < βs < 1),Rms+1(As; x, y) denotes the (ms + 1)-st remainder of the Taylor series of As at x expendedabout y (s = 1, 2, ··· , r), M =èrs=1 ms, the author proves that if 0 < β =èrs=1 βs < 1,and ? ∈ Lq(Sn?1) for some q > 1/(1 ? β), then for any p ∈ (1, ∞), and some appropriate0 < β < 1, TA1,A2,···,Ar is bounded on Lp(Rn).zh_CN
dc.language.isozhzh_CN
dc.source.urihttp://epub.cnki.net/grid2008/brief/detailj.aspx?filename=SXWY200504020&dbname=CJFQ2005zh_CN
dc.subjectMultilinear operatorzh_CN
dc.subjectoscillatory singular integralzh_CN
dc.subjectLipschitz spaceszh_CN
dc.subjectroughkernelzh_CN
dc.titleA LIPSCHITZ ESTIMATE FOR MULTILINEAR OSCILLATORY SINGULAR INTEGRALS WITH ROUGH KERNELSzh_CN
dc.typeArticlezh_CN


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record