Show simple item record

dc.contributor.authorJie Bai
dc.contributor.author白杰
dc.contributor.authorAbdalghani Daaoub
dc.contributor.authorSara Sangtarash
dc.contributor.authorXiaohui Li
dc.contributor.author李晓慧
dc.contributor.authorYongxiang Tang
dc.contributor.author唐永翔
dc.contributor.authorQi Zou
dc.contributor.authorHatef Sadeghi
dc.contributor.authorShuai Liu
dc.contributor.author刘帅
dc.contributor.authorXiaojuan Huang
dc.contributor.author黄晓娟
dc.contributor.authorZhibing Tan
dc.contributor.author谭志冰
dc.contributor.authorJunyang Liu
dc.contributor.author刘俊扬
dc.contributor.authorYang Yang
dc.contributor.author杨杨
dc.contributor.authorJia Shi
dc.contributor.author师佳
dc.contributor.authorGábor Mészáros
dc.contributor.authorWenbo Chen
dc.contributor.author陈文博
dc.contributor.authorColin Lambert
dc.contributor.authorWenjing Hong
dc.contributor.author洪文晶
dc.date.accessioned2019-02-21T07:34:10Z
dc.date.available2019-02-21T07:34:10Z
dc.date.issued2019-02
dc.identifier.citationNature Materials,2019:doi.org/10.1038/s41563-018-0265-4zh_CN
dc.identifier.issn1476-4660
dc.identifier.urihttps://doi.org/10.1038/s41563-018-0265-4
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/171133
dc.description基于单个有机分子来构筑电子器件为电子器件微型化提供潜在技术方案。本研究发展了可集成电化学门控的单分子电子器件测试芯片技术和科学仪器方法,在实验和理论两个层面对具有相消量子干涉效应的噻吩衍生物分子器件的电输运过程进行了电化学调控研究,从而首次在室温下实现了对单分子电子器件中量子干涉效应的反共振现象的直接观测和调控,为制备基于量子干涉效应的新型分子材料和器件提供了全新的设计思路和策略。该研究充分展示了电化学调控技术在信息材料和器件领域的重要应用潜力,也体现了我校固体表面物理化学国家重点实验室在电化学研究和科学仪器研发领域的技术积累,以及面向科学前沿开展交叉学科探索的研究特色。 该研究工作是在洪文晶教授、上海电力大学陈文博教授、英国兰卡斯特大学Colin Lambert教授指导下完成的。化学化工学院博士生白杰和李晓慧为论文的共同第一作者,刘俊扬副研究员、师佳副教授、研究生唐永翔、刘帅、黄晓娟、谭志冰和萨本栋微纳研究院的杨杨副教授等也参与了研究工作。田中群教授和毛秉伟教授为该工作提供了重要指导。zh_CN
dc.description.abstract【Abstract】Controlling the electrical conductance and in particular the occurrence of quantum interference in single-molecule junctions through gating effects, has potential for the realization of high-performance functional molecular devices. In this work, we used an electrochemically-gated, mechanically-controllable break junction technique to tune the electronic behaviour of thiophene-based molecular junctions that show destructive quantum interference (DQI) features. By varying the voltage applied to the electrochemical gate at room temperature, we reached a conductance minimum that provides direct evidence of charge transport controlled by an anti-resonance arising from DQI. Our molecular system enables conductance tuning close to two orders of magnitude within the non-faradaic potential region, which is significantly higher than that achieved with molecules not showing DQI. Our experimental results, interpreted using quantum transport theory, demonstrate that electrochemical gating is a promising strategy for obtaining improved in-situ control over the electrical performance of interference-based molecular devices.zh_CN
dc.description.sponsorshipThis research was supported by the National Key R&D Program of China (2017YFA0204902), National Natural Science Foundation of China (21722305, 21673195, 21503179, 21703188), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, Natural Science Foundation of Shanghai (17ZR1447100), Science and Technology Commission of Shanghai Municipality (14DZ2261000), China Postdoctoral Science Foundation (2017M622060) for funding work in Xiamen. It was also supported by EU Horizon 2020 project QuIET under grant agreement no. 767187EC FP7 ITN ‘MOLESCO’ project no. 606728 and UK EPSRC grants EP/N017188/1 and EP/M014452/1 and Leverhulme Trust (Leverhulme Early Career Fellowships no. ECF-2017-186 and ECF-2018-375) for funding instrumentation used in Lancaster. It was also supported by Hungarian and Czech Academies of Sciences (P2015-107) and Hungarian Research Foundation (OTKA 112034) for funding instrumentation used in Hungary. The authors thank Z.-Q. Tian and B.-W. Mao, Xiamen University, for useful discussions. 该工作获得科技部国家重点研发计划课题(2017YFA0204902),国家自然科学基金委优秀青年科学基金等项目(21722305、21673195、21703188、21503179)以及中国博士后科学基金(2017M622060)等项目的资助,也得到了固体表面物理化学国家重点实验室、能源材料化学协同创新中心的支持。zh_CN
dc.language.isoenzh_CN
dc.publisherSpringer Nature Publishing AGzh_CN
dc.relation.isreferencedbyhttps://news.xmu.edu.cn/2019/0212/c1552a362481/page.htm
dc.subjectElectronic deviceszh_CN
dc.subjectElectronic properties and materialszh_CN
dc.subjectMolecular electronicszh_CN
dc.titleAnti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gatingzh_CN
dc.typeJournal Paperzh_CN


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record