• 中文
    • English
  • English 
    • 中文
    • English
  • Login
View Item 
  •   DSpace Home
  • 信息科学与技术学院(撤)
  • 信息技术-学位论文
  • View Item
  •   DSpace Home
  • 信息科学与技术学院(撤)
  • 信息技术-学位论文
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

基于参数与特征冗余压缩的卷积神经网络加速算法研究
Research on Accelerating Convolutional Neural Networks via Eliminating Weight and Feature Redundancy

Thumbnail
Full Text
基于参数与特征冗余压缩的卷积神经网络加速算法研究.pdf (977.1Kb)
Date
2018-01-02
Author
陈超
Collections
  • 信息技术-学位论文 [3833]
Show full item record
Abstract
务获得了突破式的性能提升,通过可学习的卷积滤波器、带有非线性输出单元的神经元、更深层的网络、更多样本,卷积神经网络算法得以拥有足够优异至应用级的表现,被广泛部署在服务器端与移动终端等嵌入式设备中。但是,卷积神经网络以高昂的计算成本为代价换取性能增益的同时,也意味着在工业部署中部署等量的服务需要更高的硬件开销,同样,在学术研究中,网络模型的训练时间成也限制了研究效率的瓶颈。因此,一种与具体硬件环境低耦合的卷积神经网络加速算法对扩展卷积神经网络的应用范围、降低应用成本有着重大意义。 因故,本文在深入研究卷积神经网络模型结构、基本组成单元以及系统分析网络模型的计算时间开销成本的基础上,提出了一种基...
 
Abstract In recent years, deep convolutional neural networks (CNNs) have achieved breakthrough in tasks such as localization, retrieval, detection and recognition of visual content. Through learningable convolution filters, neurons with non-linear output cells , deeper models and large-scale samples, convolution neural network have achieved enough performence to be widely deployed in the server ...
 
URI
https://dspace.xmu.edu.cn/handle/2288/170734

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies