Show simple item record

dc.contributor.advisor金贤安
dc.contributor.author李梦琛
dc.date.accessioned2018-12-05T01:40:23Z
dc.date.available2018-12-05T01:40:23Z
dc.date.issued2017-12-27
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/170049
dc.description.abstract本文研究了无割边无环的连通图G=(V,E)的Tutte多项式和Jones多项式的极端项系数。设t_{i,j}为图G的Tutte多项式T(G;x,y)中x^iy^j项的系数。我们通过色多项式的圈格和流多项式的键格的第0层至第3层元素,修正了已知结果t_{0,m−n−1}及t_{1,m−n−1}的值,并且得到了t_{0,m−n−2}和t_{n−4,0}。利用Jones多项式与Tutte多项式的关系,将Tutte多项式极端项的系数特殊化到Jones多项式,验证了已知结果,并进一步给出了Jones多项式中t_{|E|&...
dc.description.abstractIn this paper, we study expressions of several extreme coefficients of the Tutte and Jones polynomials of a graph G, which is bridgeless, loopless and connected. Let t_i,j bethecoefficientof x^iy^j intheTuttepolynomial T(x,y) of G. Withtheaid of bond lattice and circuit lattice, we first revise the expressions of t_{0,m−n−1} and t_{1,m−n−1} obtained by Gon...
dc.language.isozh_CN
dc.relation.urihttps://catalog.xmu.edu.cn/opac/openlink.php?strText=58280&doctype=ALL&strSearchType=callno
dc.source.urihttps://etd.xmu.edu.cn/detail.asp?serial=60397
dc.subjectJones多项式
dc.subjectTutte多项式
dc.subject系数
dc.subjectMobius函数
dc.subject色多项式
dc.subject流多项式
dc.subjectJones polynomial
dc.subjectTutte polynomial
dc.subjectextreme coefficients
dc.subjectMobius function
dc.subjectchromatic polynomial
dc.subjectflow polynomial
dc.title图的Tutte和Jones多项式的极端项系数
dc.title.alternativeOn extreme coefficients of the Tutte and Jones polynomials of graphs
dc.typethesis
dc.date.replied2017-05-13
dc.description.note学位:理学硕士
dc.description.note院系专业:数学科学学院_应用数学
dc.description.note学号:19020141152628


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record