Show simple item record

dc.contributor.author陈人楷
dc.contributor.author蔡聪波
dc.date.accessioned2018-11-26T08:55:17Z
dc.date.available2018-11-26T08:55:17Z
dc.date.issued2016-04-15
dc.identifier.citation现代计算机(专业版),2016,(11):75-78
dc.identifier.issn1007-1423
dc.identifier.otherXDJS201611018
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/165697
dc.description.abstract定量磁化率成像由于能够定量分析组织内部的顺磁性物质而受到越来越多的关注。然而由局部场反演出磁化率分布的过程是一个病态反问题,在反演过程中,引入合理的先验信息可以提高结果的准确性。为此,提出基于超拉普拉斯分布的磁化率重建算法,实际人脑实验验证该方法在提高结果准确性方面的优越性。
dc.description.abstractThere is a growing interest in quantitative susceptibility mapping because it is being used for quantifying tissue susceptibility in magnetic resonance imaging. However, the estimation of magnetic susceptibility from phase is an ill-posed problem. Introduce a more accurate prior information in order to improve the accuracy of experimental results. Proposes a magnetic susceptibility reconstruction algorithm based on Hyper-Laplacian priors. The numerical phantom experiment and vivo experiment both confirm that the proposed method can accurately measure susceptibility.
dc.language.isozh_CN
dc.subject定量磁化率成像
dc.subject病态反问题
dc.subject超拉普拉斯分布
dc.subjectQuantitative Susceptibility Mapping
dc.subjectIll-posed Problem
dc.subjectHyper-Laplacian Priors
dc.title基于超拉普拉斯分布的磁化率重建算法
dc.title.alternativeMagnetic Susceptibility Reconstruction Algorithm Using Hyper-Laplacian Priors
dc.typeArticle


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record