• 中文
    • English
  • English 
    • 中文
    • English
  • Login
View Item 
  •   DSpace Home
  • 数学科学学院
  • 数学科学-已发表论文
  • View Item
  •   DSpace Home
  • 数学科学学院
  • 数学科学-已发表论文
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

强超弱紧生成Banach空间不动点性质
Fixed-point property of strongly super weakly compact generated Banach spaces

Thumbnail
Full Text
强超弱紧生成Banach空间不动点性质.pdf (264.2Kb)
Date
2017
Author
张吉超
张文
Collections
  • 数学科学-已发表论文 [2662]
Show full item record
Abstract
主要研究Banach空间的不动点性质,并给出一种全新的证明方法.首先利用超幂方法证明范数一致$G$光滑在凸集本身以及它的超幂上是相等的,然后利用; 反证法证明凸集在范数一致$G$光滑下对非扩张映射具有不动点性质,最后证明了每个强超弱紧生成的Banach空间在再赋范意义下满足每个弱紧凸集具有超; 不动点性质.
 
The fixed-point property of Banach space is studied and a new proof; method is given. Firstly, the ultraproduct method is used to prove that; the uniformly $G - {\rm{differentiable}}$ norms are equivalent under; convex sets and its ultraproduct. Then, by means of counter-proof, it is; proven that convex sets have the fixed-point property for nonexpansive; mappings under the uniformly $G - {\rm{differentiable}}$ norm sense.; Finally, it is shown that every strongly super weakly compact generated; Banach space can be renormed so that every weakly compact convex set has; super fixed-point property.
 
Citation
大连理工大学学报,2017,(1):100-104
URI
https://dspace.xmu.edu.cn/handle/2288/165269

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies