• 中文
    • English
  • English 
    • 中文
    • English
  • Login
View Item 
  •   DSpace Home
  • 软件学院(撤)
  • 软件学院-已发表论文
  • View Item
  •   DSpace Home
  • 软件学院(撤)
  • 软件学院-已发表论文
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

基于主题划分的移动社交网络关键位置发现研究
Research on topic-based key node discovery in mobile social network

Thumbnail
Full Text
基于主题划分的移动社交网络关键位置发现研究.pdf (354.5Kb)
Date
2017
Author
陈功
卢菁
张仲楠
Collections
  • 软件学院-已发表论文 [471]
Show full item record
Abstract
目前对关键位置的研究大多侧重于整个网络的拓扑结构,而忽视了节点本身被赋予的社会属性,无法适用于体现用户当前偏好意愿的在线查询。引入主题划分的概念; 来描述节点所具备的不同社会属性。系统分为离线处理和在线查询两个模块,离线环境下主要致力于构建基于主题划分的图网络,以及计算最大路径、最大转移概率; 、影响力上界;; 在线模块根据既有的离线处理,通过加入含有主题划分的查询,将满足条件的关键节点找出,更符合实际需求。实验表明,该系统能够在离线处理后对节点的影响力; 作出正确的评估,在准确率和召回率方面均优于传统的位置推荐算法。
 
Current research on key location discovery is mostly focused on the; topology of the entire network,ignoring the social attributes.; Therefore,the calculations can not meet the current demand. This paper; introduced the concept of the topic and described the different social; attributes of the nodes.The entire system was divided into two modules:; offline processing and online query processing. The offline module was; focused on building a topic-based network,computing the maximum path,the; maximum migration probability,and the key influence upper bound; calculation. Online module used the query containing topics, to make the; processing more in line with actual demand. Experimental results show; that the system can discover the key node set within an acceptable time; frame and ensure precision and recall rate better than traditional; algorithm.
 
Citation
计算机应用研究,2017,(7):2010-2015
URI
https://dspace.xmu.edu.cn/handle/2288/164708

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies