Show simple item record

dc.contributor.author庄伟芬
dc.contributor.author卢琳璋
dc.date.accessioned2017-11-14T02:51:32Z
dc.date.available2017-11-14T02:51:32Z
dc.date.issued2004-12-30
dc.identifier.citation厦门大学学报(自然科学版),2004,(S1):349-352
dc.identifier.issn0438-0479
dc.identifier.otherXDZK2004S1075
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/154969
dc.description.abstractKotakemori研究了不可约对角占优Z 阵的(I+Smax)预条件Gauss Seidel迭代法,并证明在一定条件下,进行(I+Smax)预处理比(I+S)预处理收敛效果更好.本文将其收敛性定理推广到具有广泛应用背景的H 阵,并将这两类预条件Gauss Seidel迭代法相结合对不可约非奇M 阵进行两次适当的预处理,数值例子表明这样可以大大加快Gauss Seidel迭代法的收敛速度.
dc.description.abstractHisashiki Kotakemori had proposed a preconditioner (I+S_(max)) for irreducibly diagonally dominant Z-matrix, which achieves better convergence rate than the classical Gauss-Seidel method and even better than Modified Gauss-Seidel method with preconditioner (I+S) under certain circumstances. We extend his convergence theorem to the case of H-matrix, and apply the preconditioner (I+S_(max)) to twice preconditioning for irreducible non-singular M-matrix, combining with another preconditioner (I+S). Numerical examples had been given to confirm that the convergence rate had been improved on considerably.
dc.description.sponsorship国家自然科学基金(10271099)资助
dc.language.isozh_CN
dc.subject预条件Gauss-Seidel迭代法
dc.subject收敛速度
dc.subjectH矩阵
dc.subjectpreconditioning Gauss-Seidel iterative method
dc.subjectconvergence rate
dc.subjectH-matrix
dc.title(I+S_(max))预条件Gauss-Seidel迭代法进一步探索
dc.title.alternativeFurther Study on (I+S_(max)) Preconditioning Gauss-Seidel Iterative Method
dc.typeArticle


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record