dc.contributor.author 庄伟芬 dc.contributor.author 卢琳璋 dc.date.accessioned 2017-11-14T02:51:32Z dc.date.available 2017-11-14T02:51:32Z dc.date.issued 2004-12-30 dc.identifier.citation 厦门大学学报(自然科学版),2004,(S1):349-352 dc.identifier.issn 0438-0479 dc.identifier.other XDZK2004S1075 dc.identifier.uri https://dspace.xmu.edu.cn/handle/2288/154969 dc.description.abstract Kotakemori研究了不可约对角占优Z 阵的(I+Smax)预条件Gauss Seidel迭代法,并证明在一定条件下,进行(I+Smax)预处理比(I+S)预处理收敛效果更好.本文将其收敛性定理推广到具有广泛应用背景的H 阵,并将这两类预条件Gauss Seidel迭代法相结合对不可约非奇M 阵进行两次适当的预处理,数值例子表明这样可以大大加快Gauss Seidel迭代法的收敛速度. dc.description.abstract Hisashiki Kotakemori had proposed a preconditioner (I+S_(max)) for irreducibly diagonally dominant Z-matrix, which achieves better convergence rate than the classical Gauss-Seidel method and even better than Modified Gauss-Seidel method with preconditioner (I+S) under certain circumstances. We extend his convergence theorem to the case of H-matrix, and apply the preconditioner (I+S_(max)) to twice preconditioning for irreducible non-singular M-matrix, combining with another preconditioner (I+S). Numerical examples had been given to confirm that the convergence rate had been improved on considerably. dc.description.sponsorship 国家自然科学基金(10271099)资助 dc.language.iso zh_CN dc.subject 预条件Gauss-Seidel迭代法 dc.subject 收敛速度 dc.subject H矩阵 dc.subject preconditioning Gauss-Seidel iterative method dc.subject convergence rate dc.subject H-matrix dc.title (I+S_(max))预条件Gauss-Seidel迭代法进一步探索 dc.title.alternative Further Study on (I+S_(max)) Preconditioning Gauss-Seidel Iterative Method dc.type Article
﻿