dc.contributor.author 黄文彬 dc.contributor.author 许传炬 dc.date.accessioned 2017-11-14T02:51:25Z dc.date.available 2017-11-14T02:51:25Z dc.date.issued 2004-08-30 dc.identifier.citation 福州大学学报(自然科学版),2004,(04):61-63,81 dc.identifier.issn 1000-2243 dc.identifier.other FZDZ200404016 dc.identifier.uri https://dspace.xmu.edu.cn/handle/2288/154956 dc.description.abstract 考虑二维Poisson方程的谱元法离散系统的预条件求解问题,利用张量积的性质,分析基于GLL×GLL节点上的双线性有限元刚性矩阵s^h作为谱元离散系统A^hU=F^h的预条件,证明了(S^hU,U)l2的等价和(A^hU,U)l2性. dc.description.abstract This paper analyze the spectrum of two-dimensional preconditional spectral element approximation to Poisson proplem. The analysis is based on the algebraic properties of the stiffness matrix(s_())of the bilinear finite element method associated to the global GLL×GLL nodes, which is used as the preconditioner of the spectral element system A_()U=F_(). We theoretically show the equivalence betweeen(S_()U, U)_(l_2) and (A_()U, U)_(l_2). dc.language.iso zh_CN dc.subject Poisson方程 dc.subject 谱元法 dc.subject 有限元 dc.subject 预条件 dc.subject Poisson equation dc.subject spectral element methods dc.subject finite element dc.subject preconditioning dc.title 二维Poisson方程谱元法有限元预条件分析 dc.title.alternative Analysis for two-dimensional finite element preconditioned spectral element method of the Poisson equation dc.type Article
﻿