dc.contributor.author 欧见平 dc.contributor.author 张福基 dc.date.accessioned 2017-11-14T02:51:25Z dc.date.available 2017-11-14T02:51:25Z dc.date.issued 2004-08-25 dc.identifier.citation 数学研究与评论,2004,(03):24-28 dc.identifier.issn 1000-341X dc.identifier.other SXYJ200403004 dc.identifier.uri https://dspace.xmu.edu.cn/handle/2288/154953 dc.description.abstract 设图G是一个K-正则连通点可迁图.如果G不是极大限制性边连通的,那么G含有一个(k-1)-因子,它的所有分支都同构于同一个阶价于k和2k-3之间的点可迁图.此结果在某种程度上加强了Watkins的相应命题:如果k正则点可迁图G不是k连通的,那么G有一个因子,它的每一个分支都同构于同一个点可迁图. dc.description.abstract Let G be a fc-regular connected vertex transitive graph. If G is not maximal restricted edge connected, then G has a (k- 1)-factor with components isomorphic to the same vertex transitive graph of order between k and 2k-3. This observation strenghen to some extent the corresponding result obtained by Watkins, which said that fc-regular vertex transitive graph G has a factor with components isomorphic to a vertex transitive graphs if G is not k connected. dc.description.sponsorship Supported by NNSF of China(10271105);; Doctoral Foundation of Zhangzhou Normal College. dc.language.iso zh_CN dc.subject 点可迁图 dc.subject 正则因子 dc.subject 限制性边割 dc.subject 断片 dc.subject vertex transitive graph dc.subject regular factor dc.subject restricted edge cut dc.subject fragment. dc.title 点可迁图中的正则因子(英文) dc.title.alternative Regular Factor in Vertex Transitive Graphs dc.type Article
﻿