Show simple item record

dc.contributor.author林然
dc.contributor.author刘发旺
dc.date.accessioned2017-11-14T02:51:22Z
dc.date.available2017-11-14T02:51:22Z
dc.date.issued2004-01-30
dc.identifier.citation厦门大学学报(自然科学版),2004,(01):27-31
dc.identifier.issn0438-0479
dc.identifier.otherXDZK200401007
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/154929
dc.description.abstract对于整数阶常微分方程的数值解法,如欧拉法、线性多步法等都已有较完善的理论.而对于分数阶微分方程数值方法和误差估计的理论研究相对较少.在这篇文章中,我们考虑最简单的分数阶常微分方程,引进了分数阶的线性多步法,导出了分数阶常微分方程初值问题的高阶近似,证明了其方法的相容性和收敛性,并且给出了稳定性分析.最后给出了一些数值例子,证实了这个分数阶线性多步法是解分数阶常微分方程的一个有效方法.
dc.description.abstractNumerical method of integral order ordinary differential equation, for example, Euler method, linear multiple step method, and so on, has had quite perfect theories. Theoretical studies of the numerical method and the error estimate of fractional order differential equation are very little. In this paper, the simplest fractional order ordinary differential equation is considered. A fractional order linear multiple step method is introduced, a high order approximation of fractional order ordinary differential equation with initial value is derived, and the consistence, convergence and stability of the method are proved. Finally, some numerical examples are provided to show that the fractional order linear multiple step method for solving the fractional order ordinary differential equation is an effective method.
dc.description.sponsorship国家自然科学基金(10271098)资助
dc.language.isozh_CN
dc.subject分数阶常微分方程
dc.subject分数阶的线性多步法
dc.subject相容性
dc.subject收敛性
dc.subject稳定性.
dc.subjectfractional order ordinary differential equation
dc.subjectfractional order linear multiple step method
dc.subjectconsistence
dc.subjectconvergence
dc.subjectstability
dc.title分数阶常微分方程初值问题的高阶近似
dc.title.alternativeHigh Order Approximations for the Fractional Ordinary Differential Equation with Initial Value Problem
dc.typeArticle


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record