Show simple item record

dc.contributor.author王培林
dc.contributor.author谭忠
dc.date.accessioned2017-11-14T02:51:22Z
dc.date.available2017-11-14T02:51:22Z
dc.date.issued2004-01-30
dc.identifier.citation厦门大学学报(自然科学版),2004,(01):23-26
dc.identifier.issn0438-0479
dc.identifier.otherXDZK200401006
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/154927
dc.description.abstract研究一类具有Neumann边界条件及临界Sobolev指数的半线性抛物方程的整体解的渐近性及Lq 估计.这里Ω是RN(N≥3)中的有界光滑区域并且p=2 -1=N+2N-2.
dc.description.abstractIn this paper,we are concerned with the asymptotic behavior and L~p-estimate of the global solution of one kind of parabolic equation with critical sobolev exponent and neumann boundary condition. Here Ω is a smooth bounded domain in R~N(N≥ 3), and p=2~*-1=N+2N-2.We prove that: (1)If u(x,t;u_0) is a global solution with u_0∈∑,then u∈L~q(Ω×(t_0,∞)) for any q(2≤ q<∞) and any t_0>0,and (‖u‖_(L~q(Ω×(t_0,∞))))≤c, where constant c depends only on N,q,t_0 and Ω.In paticular,u is a classical solution of (1) for all t≥t_0>0.(2)If u(x,t;u_0) is a global solution with u_0∈∑,and uniformly bounded in H~1 with respect to t,then,for any subsquence t_n→∞,there exists a stationary for w such that u(x,t_n;u_0)w in (H~1(Ω)).
dc.description.sponsorship国家自然科学基金(10171083);; 福建农林大学青年教师基金(2001 91)资助
dc.language.isozh_CN
dc.subject整体解
dc.subject半线性抛物方程
dc.subjectLq-估计
dc.subject渐近性
dc.subjectglobal solution
dc.subjectsemilinear parabolic equation
dc.subjectL~q-estimate
dc.subjectasymptotic behavior
dc.title具有Neumann边界条件及临界Sobolev指数的半线性抛物方程整体解的渐近性及L~q-估计
dc.title.alternativeAsymptotic Behavior and L~p-Estimate of Global Solution of Semilinear Parabolic Equation with Critical Sobolev Exponent and Neumann Boundary Condition
dc.typeArticle


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record