• 中文
    • English
  • English 
    • 中文
    • English
  • Login
View Item 
  •   DSpace Home
  • 数学科学学院
  • 数学科学-已发表论文
  • View Item
  •   DSpace Home
  • 数学科学学院
  • 数学科学-已发表论文
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

全有向图的幂敛指数(英文)
The Index of Convergence of the Total Digraph

Thumbnail
Full Text
全有向图的幂敛指数(英文).pdf (351.5Kb)
Date
2002-11-30
Author
晏卫根
张福基
Collections
  • 数学科学-已发表论文 [2662]
Show full item record
Abstract
设D为有向图,T(D)为D的全有向图(Total-digraph),k(D)与p(D)分别为D的幂敛指数(Index of convergence)与周期(Period).本文证明了,1.对任意非平凡有向图D,p(T(D))=1,k(T(D))≤max{2p(D)-1,2k(D)+1},特别地,当D为本原有向图时,k(T(D))≤k(D)+1;当D不含有向圈时,k(T(D))=2k(D)-1;当D为有向圈C_n时,k(T(D))=2n-1.2.对任意非平凡强连通图D,k(T(D))≥Diam(D)+1.我们还证明了以上界是不可改进的最好界.
 
Let D be a digraph, T(D) denote the total digraph of D, k(D) and p(D) denote the index of convergence and the period of D, respectively. Following results are obtained in this paper: 1. For a non-trivial digraph D, then p(T(D)) = 1, and k(T(D)) ≤ max{2p(D) -1,2k(D) + 1}. Especially, we prove that k(T(D)) ≤ k(D) + 1 if D is a primitive digraph; and k(T(D)) = 2k(D) - 1 if there are not directed cycles in D; and k(T(D)) = 2_n - 1 if D is a directed cycle C_n. 2. For a strongly connected digraph D, then k(T(D)) ≥ Diam(D) + 1, where Diam(D) denotes the diameter of D. We also proved that these bounds are best.
 
Citation
运筹学学报,2002,(04):61-68
URI
https://dspace.xmu.edu.cn/handle/2288/154922

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies