Show simple item record

dc.contributor.author钟春平
dc.contributor.author黄洪艺
dc.contributor.author姚宗元
dc.date.accessioned2017-11-14T02:51:21Z
dc.date.available2017-11-14T02:51:21Z
dc.date.issued2002-10-26
dc.identifier.citation系统科学与数学,2002,(04):57-64
dc.identifier.issn1000-0577
dc.identifier.otherSTYS200204007
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/154920
dc.description.abstract本文得到Cn空间中有界域上光滑函数的一个抽象的积分公式,这个公式的特点是积分核中含有m-1个抽象的向量函数W(1),W(2),…,W(m-1)和m-1个定义在R中的独立参数t2,t3,…,tm,其中m=2,3,…,N(N<+∞).由这个公式,不但可以得到Cn中有界域上光滑函数一些已有积分公式(包括著名的Leray公式),还可以得到Cn空间中有界域上全纯函数著名的Cauchy-Fantappie公式的一种积分核,含有m-1个抽象的向量函数W(1),W(2),…,W(m-1)和m-2个独立参数t2,t3;…,tm-1的拓广式,而利用这个拓广式,通过适当选择其中m-1个向量函数和m-2个独立参数,就可得到至今许多区域上全纯函数著名的积分公式的种种拓广式.
dc.description.abstractThe author obtains an abstract integral formula for smooth functions on closed bounded domain in Cn. The characteristic properties of this integral formula are: It contains m -1 abstract vector functions and m-1 independent parameters defined in R, where m = 2,3,…, N (N < +∞). This abstract integral formula may be considered as an extension form of Cauchy-Leray formula in Cn, when the smooth functions are also holomorphic. In a bounded domain this abstract integral formula is an extension form of Cauchy-Fantappie formula in Cn.
dc.description.sponsorship国家自然科学基金(19771068)资助课题
dc.language.isozh_CN
dc.subject积分表示
dc.subjectLeray公式
dc.subjectC-F公式
dc.subject拓广式
dc.subject有界域
dc.subjectBounded domain, integral formula, Cauchy-Leray formula, Cauchy-Fantappie formula, extension form.
dc.titleCI~n空间中Cauchy-Leray公式与Cauchy-Fantappiè公式的拓广
dc.title.alternativeAN EXTENSION FORM OF CAUCHY-LERAY FORMULA AND CAUCHY-FAUTAPPIE FORMULA IN C~n
dc.typeArticle


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record