SEFP:一种新的固定度为4的Cayley互连网络
SEFP:A New Cayley interconnection Network of degree four
Abstract
提出一种新的固定度为4的正则互连网络SEFPn,它是一种置换群Sn上的Cayley 图。SEFPn是基于洗牌(shuffle),交换(exchange)及翻转(flip)运算的互连网络。它直径短,其直径大约是SEPn(洗牌交换置换网络[5])的一半。我们提出了基于此网络的路由算法,并由此得到了此网络的直径估计。这种网络被证明能有效模拟其它基于置换群Sn上的Cayley 图。在要求具有限定数量的I/O端口的VLSI实现方面,此网络很具有吸引力。另外我们还讨论了此网络的一些代数性质。 In this paper, we propose a family of new regular Cayley networks of degree 4 based on permutation groups. We have shown that its diameter is only about half of that of SEP[5].These graph are shown to be able to efficiently simulate or embed other permutation group based graphs; thus they seem to be very attractive for VLSI implementation and for applications requiring bounded number of I/O ports.