Show simple item record

dc.contributor.author黄玉笙
dc.date.accessioned2017-11-14T02:51:19Z
dc.date.available2017-11-14T02:51:19Z
dc.date.issued2002-04-10
dc.identifier.citation厦门大学学报(自然科学版),2002,(02):16-19
dc.identifier.issn0438-0479
dc.identifier.otherXDZK200202003
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/154894
dc.description.abstract获得一个Cn 中逐块光滑边界的有界域上Bochner Martinelli积分的一致估计式及其奇点分解定理的应用
dc.description.abstractLet D be a bounded domain in C n space with piecewise smooth boundary defined by C (1) functions. K(ζ,z) denotes the Bochner-Martinelli kernel. The author proved that if z∈,δ>0, then there existed constants γ 0,γ 1>0 with no respect to z and δ such that ∫D\S z,δ|K(ζ,z)|γ 1 and the theorem of the partition at singular point held in the following: If f(z)∈A c(D), δ>0, then there existed finite closed spheroids S i, i=1,2,...,N(δ) with radius δ,∪ iS iD such that (i) f(z)=∑N(δ)i=1f i(z), (ii) ‖f i‖γ‖f‖ held, constant γ>0 with no respect to f and f i, i=1,...,N(δ).
dc.language.isozh_CN
dc.subjectBochner-Martinelli积分
dc.subject一致估计
dc.subject奇点分解
dc.subjectB-M kernel
dc.subjectuniform estimate
dc.subjecttheorem of partition
dc.titleC~n中一个柯西积分的一致估计及奇点分解定理
dc.title.alternativeA Uniform Estimation of Cauchy Integral and Theorem of Partition at Singular Point in C~n
dc.typeArticle


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record