dc.contributor.author 黄玉笙 dc.date.accessioned 2017-11-14T02:51:19Z dc.date.available 2017-11-14T02:51:19Z dc.date.issued 2002-04-10 dc.identifier.citation 厦门大学学报(自然科学版),2002,(02):16-19 dc.identifier.issn 0438-0479 dc.identifier.other XDZK200202003 dc.identifier.uri https://dspace.xmu.edu.cn/handle/2288/154894 dc.description.abstract 获得一个Cn 中逐块光滑边界的有界域上Bochner Martinelli积分的一致估计式及其奇点分解定理的应用 dc.description.abstract Let D be a bounded domain in C n space with piecewise smooth boundary defined by C (1) functions. K(ζ,z) denotes the Bochner-Martinelli kernel. The author proved that if z∈,δ>0, then there existed constants γ 0,γ 1>0 with no respect to z and δ such that ∫D\S z,δ|K(ζ,z)|γ 1 and the theorem of the partition at singular point held in the following: If f(z)∈A c(D), δ>0, then there existed finite closed spheroids S i, i=1,2,...,N(δ) with radius δ,∪ iS iD such that (i) f(z)=∑N(δ)i=1f i(z), (ii) ‖f i‖γ‖f‖ held, constant γ>0 with no respect to f and f i, i=1,...,N(δ). dc.language.iso zh_CN dc.subject Bochner-Martinelli积分 dc.subject 一致估计 dc.subject 奇点分解 dc.subject B-M kernel dc.subject uniform estimate dc.subject theorem of partition dc.title C~n中一个柯西积分的一致估计及奇点分解定理 dc.title.alternative A Uniform Estimation of Cauchy Integral and Theorem of Partition at Singular Point in C~n dc.type Article
﻿