dc.contributor.author 韩丕功 dc.date.accessioned 2017-11-14T02:51:14Z dc.date.available 2017-11-14T02:51:14Z dc.date.issued 2000-08-05 dc.identifier.citation 厦门大学学报(自然科学版),2000,(04):560-565 dc.identifier.issn 0438-0479 dc.identifier.other XDZK200004025 dc.identifier.uri https://dspace.xmu.edu.cn/handle/2288/154854 dc.description.abstract 研究二阶非线性椭圆型偏微分方程－ｄｉｖＡ（ｘ，ｕ， ｕ）＋ Ｂ（ｘ，ｕ，ｕ）＝μ，在可控增长结构条件－Ａ（ｘ，ｚ，η）·η≥λ｜η｜ｐ－Ａ｜η｜ｐ＊－１，Ｄ｜Ａ（ｘ，ｚ，η）｜＜Ａ１（｜η｜~(ｐ－１)十｜ｚ｜ｐ＊（１－１／ｐ）．｜Ｂ（ｘ，ｚ，η）｜≤Ａ（｜η｜ｐ（１－１／ｐ＊）＋｜ｚ｜ｐ＊－１）下，应用 Ｍｏｓｅｒ迭代法得出弱解的局部极值原理，并进一步得出弱解的内部估计和全局估计． dc.description.abstract The nonlinear elliptic partial differential equation of second order, -divA(x, u, u) + B(x,u,u) =μ,is studied. Using Moser iterative method, the author obtains local extremum principle for weak solutions, internal and whole estimates for weak solutions, under controllable growth conditions-A(x,z,η)·η≥λ｜η｜ｐ－A｜ｚ｜ｐ＊－１，｜A（ｘ，ｚ，η）｜≤Ａ１（｜η｜p-1+|z|p*(1-1/p)+1),|B(x,z,η）｜≤Ａ｜η｜p(1-1/p*)+|z|p*-1+1 dc.language.iso zh_CN dc.subject 可控增长条件 dc.subject 椭圆型方程 dc.subject 弱解 dc.subject controllable growth condition dc.subject elliptic equation dc.subject weak solution dc.title 可控增长条件下一类椭圆型方程弱解的局部极值原理 dc.title.alternative Local Extremum Principle for Weak Solutions of a Type of Elliptic Equation under Controllable Growth Conditions dc.type Article
﻿