Show simple item record

dc.contributor.author韩丕功
dc.date.accessioned2017-11-14T02:51:14Z
dc.date.available2017-11-14T02:51:14Z
dc.date.issued2000-08-05
dc.identifier.citation厦门大学学报(自然科学版),2000,(04):560-565
dc.identifier.issn0438-0479
dc.identifier.otherXDZK200004025
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/154854
dc.description.abstract研究二阶非线性椭圆型偏微分方程-divA(x,u, u)+ B(x,u,u)=μ,在可控增长结构条件-A(x,z,η)·η≥λ|η|p-A|η|p*-1,D|A(x,z,η)|<A1(|η|~(p-1)十|z|p*(1-1/p).|B(x,z,η)|≤A(|η|p(1-1/p*)+|z|p*-1)下,应用 Moser迭代法得出弱解的局部极值原理,并进一步得出弱解的内部估计和全局估计.
dc.description.abstractThe nonlinear elliptic partial differential equation of second order, -divA(x, u, u) + B(x,u,u) =μ,is studied. Using Moser iterative method, the author obtains local extremum principle for weak solutions, internal and whole estimates for weak solutions, under controllable growth conditions-A(x,z,η)·η≥λ|η|p-A|z|p*-1,|A(x,z,η)|≤A1(|η|p-1+|z|p*(1-1/p)+1),|B(x,z,η)|≤A|η|p(1-1/p*)+|z|p*-1+1
dc.language.isozh_CN
dc.subject可控增长条件
dc.subject椭圆型方程
dc.subject弱解
dc.subjectcontrollable growth condition
dc.subjectelliptic equation
dc.subjectweak solution
dc.title可控增长条件下一类椭圆型方程弱解的局部极值原理
dc.title.alternativeLocal Extremum Principle for Weak Solutions of a Type of Elliptic Equation under Controllable Growth Conditions
dc.typeArticle


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record