• 中文
    • English
  • English 
    • 中文
    • English
  • Login
View Item 
  •   DSpace Home
  • 数学科学学院
  • 数学科学-已发表论文
  • View Item
  •   DSpace Home
  • 数学科学学院
  • 数学科学-已发表论文
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

关于双曲型方程解的爆破
ABOUT BLOW UP OF THE SOLUTIONS OF THE HYPERBOLIC EQUATION

Thumbnail
Full Text
关于双曲型方程解的爆破.pdf (171.0Kb)
Date
2000-07-26
Author
曹镇潮
王碧祥
郭柏灵
Collections
  • 数学科学-已发表论文 [2662]
Show full item record
Abstract
在RN×R+(N≥2)中考虑非线性双曲型方程:utt-Di(aij(x)Dju)=|u|p-1u。Kato1980年证明了当1<P≤时,Cauchy问题的解可能在有限时刻爆破.本文使用不同的方法估计,把Kato的结果改进为1<P<
 
The nonIinear hyperbolic equation in RN × R+ (N ≥ 2): utt-Di(aij(x)Dju)=|u|p-1u(x,t) is considered. In 1980, Kato proved that the solutions of Cauchy problemmay blow up in finite time if 1 < p ≤ . In the present work we win improve his resultallowing 1 < p < by using a dtherellt method.
 
Citation
系统科学与数学,2000,(03):285-288
URI
https://dspace.xmu.edu.cn/handle/2288/154853

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies