Show simple item record

dc.contributor.author钟春平
dc.contributor.author姚宗元
dc.date.accessioned2017-11-14T02:51:13Z
dc.date.available2017-11-14T02:51:13Z
dc.date.issued2000-04-05
dc.identifier.citation厦门大学学报(自然科学版),2000,(02):5-10
dc.identifier.issn0438-0479
dc.identifier.otherXDZK200002000
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/154848
dc.description.abstract利用文献 [1 ]在 Cn空间中建立抽象积分表示的思想及 Henkin和 Leiterer在文献 [2 ]中构造的Stein流形上积分核的方法 ,将 Stein流形上已有的一些积分表示进行拓广 .得到 Stein流形上具逐块光滑边界的相对紧开集 D上 f连续且 -f也连续的一个抽象积分表示 ,这个积分表示的特点是含有m个可供选择的 Leray截面和 m个可供选择的实参数 ,当适当选取其中的 Leray截面和实参数时 ,不但可得到 Stein流形上已有的 B- M公式、Leray- Stokes公式、Cauchy- Fantappiè公式 ,而且还可得到这些公式相应的拓广式
dc.description.abstractBy using the idea of constructing the abstract integral formulas in Ref.[1] and the technic of constructing integral kernel on Stein manifold discovered by G.M.Henkin & J.Lerterer. some integral formulas on Stein manifold are generalized. An abstract integral formula for f is obtained, where f and - f are continuous on and DX is an open set with piecewise C 1 boundary. The characteristic of this formula is that there are m (≥1 integer) Leray sections and that m real parameters can be chosen. When chosing the Leray sections and real paramters properly, one can obtain not only the B M formula, Leray Stokes formula, Cauchy Fantappiè formula, but also their extensional forms accordingly.
dc.description.sponsorship国家自然科学基金!资助项目 (1 9771 0 68);; 福建省自然科学基金资助项目!(A981 0 0 0 1 )
dc.language.isozh_CN
dc.subjectStein流形
dc.subject积分表示
dc.subjectLeray截面
dc.subjectStein manifold
dc.subjectintegral representation
dc.subjectLeray section
dc.titleStein流形上的一个积分表示
dc.title.alternativeAn Integral Representation of Functions on Stein Manifold
dc.typeArticle


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record