dc.contributor.author 钟春平 dc.contributor.author 姚宗元 dc.date.accessioned 2017-11-14T02:51:13Z dc.date.available 2017-11-14T02:51:13Z dc.date.issued 2000-04-05 dc.identifier.citation 厦门大学学报(自然科学版),2000,(02):5-10 dc.identifier.issn 0438-0479 dc.identifier.other XDZK200002000 dc.identifier.uri https://dspace.xmu.edu.cn/handle/2288/154848 dc.description.abstract 利用文献 [1 ]在 Cn空间中建立抽象积分表示的思想及 Henkin和 Leiterer在文献 [2 ]中构造的Stein流形上积分核的方法 ,将 Stein流形上已有的一些积分表示进行拓广 .得到 Stein流形上具逐块光滑边界的相对紧开集 D上 f连续且 -f也连续的一个抽象积分表示 ,这个积分表示的特点是含有m个可供选择的 Leray截面和 m个可供选择的实参数 ,当适当选取其中的 Leray截面和实参数时 ,不但可得到 Stein流形上已有的 B- M公式、Leray- Stokes公式、Cauchy- Fantappiè公式 ,而且还可得到这些公式相应的拓广式 dc.description.abstract By using the idea of constructing the abstract integral formulas in Ref.[1] and the technic of constructing integral kernel on Stein manifold discovered by G.M.Henkin & J.Lerterer. some integral formulas on Stein manifold are generalized. An abstract integral formula for f is obtained, where f and - f are continuous on and DX is an open set with piecewise C 1 boundary. The characteristic of this formula is that there are m (≥1 integer) Leray sections and that m real parameters can be chosen. When chosing the Leray sections and real paramters properly, one can obtain not only the B M formula, Leray Stokes formula, Cauchy Fantappiè formula, but also their extensional forms accordingly. dc.description.sponsorship 国家自然科学基金!资助项目 (1 9771 0 68);; 福建省自然科学基金资助项目!(A981 0 0 0 1 ) dc.language.iso zh_CN dc.subject Stein流形 dc.subject 积分表示 dc.subject Leray截面 dc.subject Stein manifold dc.subject integral representation dc.subject Leray section dc.title Stein流形上的一个积分表示 dc.title.alternative An Integral Representation of Functions on Stein Manifold dc.type Article
﻿