用Bernstein型算子刻划Besov空间
The Description of Besov Spaces with Bernstein Type Operators
Abstract
利用包括Bernstein 算子,Bernstein-Kantorovic算子以及Bernstein-Durrm eyer算子的Bern-stein 型算子刻划由DeVore-Yu Xiangm ing 引入的一类Besov 空间,并运用K- 泛函与内插空间之间的内在联系,建立刻划这类Besov 空间特征的等价定理. By using Bernstein operators,Bernstein Kantorovic operators, and Bernstein Durrmeyer operators as well, the problems of simultaneous appoximation in Besov spaces introduced by DeVore and Yu Xiangming are studied. A new type of equivalent theorem of Bernstein type operators is given by using the essential connections between the K functions and the interpolation spaces.