Show simple item record

dc.contributor.author欧见平
dc.contributor.author张福基
dc.date.accessioned2017-11-14T02:51:11Z
dc.date.available2017-11-14T02:51:11Z
dc.date.issued2003-01-30
dc.identifier.citation厦门大学学报(自然科学版),2003,(01):14-16
dc.identifier.issn0438-0479
dc.identifier.otherXDZK200301003
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/154829
dc.description.abstract设G是k正则连通点可迁图.图G的一个边割S称为限制性边割,如果G-S不含孤立点.最小限制性边割所含的边数λ′称为限制性边连通度.已经证明λ′≤2k-2.等号成立时,称图G是极大限制性边连通的.本文证明了:如果G不是极大限制性边连通的,那么G的顶点集存在一个划分π=(C1,…,Cm),使得由Ch导出的子图同构于一个连通k-1正则点可迁图H,h=1,2,…,m,而且k≤|H|≤2k-3.
dc.description.abstractLet G be a connected kregular vertex transitive graph. An edge cut S of G is called a restricted edge cut if G-S contains no isolated vertex. The cardinality λ′ of minimum restricted edge cut is called restricted edge connectivity. It is known that λ′≤2k-2. A graph G is maximal restricted edge connected if λ′=2k-2. We prove in this paper that if G is not maximal restricted edge connected, then there is a vertex partition π=(C1,...,Cm) in G such that G is isomorphic to a connected (k-1)regular vertex transitive graph H with order between k and 2k-3 for all h=1,2,...,m.
dc.description.sponsorship国家自然科学基金资助项目(19971071)
dc.language.isozh_CN
dc.subject点可迁图
dc.subject顶点划分
dc.subject限制性边割
dc.subject限制性断片
dc.subjectvertex transitive graph
dc.subjectvertex partition
dc.subjectrestricted edge cut
dc.subjectrestricted fragment
dc.title点可迁图的顶点划分
dc.title.alternativePartition of Vertex Transitive Graphs
dc.typeArticle


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record