dc.contributor.author 欧见平 dc.contributor.author 张福基 dc.date.accessioned 2017-11-14T02:51:11Z dc.date.available 2017-11-14T02:51:11Z dc.date.issued 2003-01-30 dc.identifier.citation 厦门大学学报(自然科学版),2003,(01):14-16 dc.identifier.issn 0438-0479 dc.identifier.other XDZK200301003 dc.identifier.uri https://dspace.xmu.edu.cn/handle/2288/154829 dc.description.abstract 设G是k正则连通点可迁图.图G的一个边割S称为限制性边割,如果G-S不含孤立点.最小限制性边割所含的边数λ′称为限制性边连通度.已经证明λ′≤2k-2.等号成立时,称图G是极大限制性边连通的.本文证明了:如果G不是极大限制性边连通的,那么G的顶点集存在一个划分π=(C1,…,Cm),使得由Ch导出的子图同构于一个连通k-1正则点可迁图H,h=1,2,…,m,而且k≤｜H｜≤2k-3. dc.description.abstract Let G be a connected kregular vertex transitive graph. An edge cut S of G is called a restricted edge cut if G-S contains no isolated vertex. The cardinality λ′ of minimum restricted edge cut is called restricted edge connectivity. It is known that λ′≤2k-2. A graph G is maximal restricted edge connected if λ′=2k-2. We prove in this paper that if G is not maximal restricted edge connected, then there is a vertex partition π=(C1,...,Cm) in G such that G is isomorphic to a connected (k-1)regular vertex transitive graph H with order between k and 2k-3 for all h=1,2,...,m. dc.description.sponsorship 国家自然科学基金资助项目(19971071) dc.language.iso zh_CN dc.subject 点可迁图 dc.subject 顶点划分 dc.subject 限制性边割 dc.subject 限制性断片 dc.subject vertex transitive graph dc.subject vertex partition dc.subject restricted edge cut dc.subject restricted fragment dc.title 点可迁图的顶点划分 dc.title.alternative Partition of Vertex Transitive Graphs dc.type Article
﻿