dc.contributor.author 张会生 dc.contributor.author 许传炬 dc.date.accessioned 2017-11-14T02:51:11Z dc.date.available 2017-11-14T02:51:11Z dc.date.issued 2003-09-30 dc.identifier.citation 数学研究,2003,(03):48-54 dc.identifier.issn 1006-6837 dc.identifier.other SSYJ200303007 dc.identifier.uri https://dspace.xmu.edu.cn/handle/2288/154825 dc.description.abstract 特征线性与semi-Lagrangian方法都是处理流体方程时间离散的两种有效的方法。它们比经典的半隐格式,如Backward-Euler/adams-Bashforth方法有更好的稳定性。本文提出一种基于高阶空间离散的特征线法,通过稳定性,精度和计算复杂性与semi-Lagrangian方法进行比较,分析了高阶特征线法的有效性和适用性,并从数值试验上对分析结果进行验证。 dc.description.abstract The characteristic method and semi-Lagrangian method are efficient ways to deal with the time-discretization of fluids equations > which have better stability properties as compared with the classical semi-implicit Backward-Euler/Adames-Bashforth method. In this paper we introduce a characteristic method based on high order space discretization and compare it with the semi-Lagrangian method in term of stability, accuracy and computational complexity- Lastly, we show some numerical results. dc.description.sponsorship 国家自然科学基金(19801029) dc.language.iso zh_CN dc.subject 特征线法 dc.subject semi-Lagrangian方法 dc.subject 谱元法 dc.subject 平流扩散问题 dc.subject characteristic method, semi-Lagrangian method, spectral element method, advection-diffusion problem dc.title 高阶特征线性及其与semi-Lagrangian方法的比较 dc.title.alternative A High Order Characteristic Method and Comparison with the Semi-Lagrangian Method dc.type Article
﻿