Show simple item record

dc.contributor.author张会生
dc.contributor.author许传炬
dc.date.accessioned2017-11-14T02:51:11Z
dc.date.available2017-11-14T02:51:11Z
dc.date.issued2003-09-30
dc.identifier.citation数学研究,2003,(03):48-54
dc.identifier.issn1006-6837
dc.identifier.otherSSYJ200303007
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/154825
dc.description.abstract特征线性与semi-Lagrangian方法都是处理流体方程时间离散的两种有效的方法。它们比经典的半隐格式,如Backward-Euler/adams-Bashforth方法有更好的稳定性。本文提出一种基于高阶空间离散的特征线法,通过稳定性,精度和计算复杂性与semi-Lagrangian方法进行比较,分析了高阶特征线法的有效性和适用性,并从数值试验上对分析结果进行验证。
dc.description.abstractThe characteristic method and semi-Lagrangian method are efficient ways to deal with the time-discretization of fluids equations > which have better stability properties as compared with the classical semi-implicit Backward-Euler/Adames-Bashforth method. In this paper we introduce a characteristic method based on high order space discretization and compare it with the semi-Lagrangian method in term of stability, accuracy and computational complexity- Lastly, we show some numerical results.
dc.description.sponsorship国家自然科学基金(19801029)
dc.language.isozh_CN
dc.subject特征线法
dc.subjectsemi-Lagrangian方法
dc.subject谱元法
dc.subject平流扩散问题
dc.subjectcharacteristic method, semi-Lagrangian method, spectral element method, advection-diffusion problem
dc.title高阶特征线性及其与semi-Lagrangian方法的比较
dc.title.alternativeA High Order Characteristic Method and Comparison with the Semi-Lagrangian Method
dc.typeArticle


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record