dc.contributor.author 汪祥 dc.contributor.author 卢琳璋 dc.date.accessioned 2017-11-14T02:51:06Z dc.date.available 2017-11-14T02:51:06Z dc.date.issued 2003-09-30 dc.identifier.citation 厦门大学学报(自然科学版),2003,(05):31-33 dc.identifier.issn 0438-0479 dc.identifier.other XDZK200305008 dc.identifier.uri https://dspace.xmu.edu.cn/handle/2288/154824 dc.description.abstract 设A=(aij)∈Cn×n,若 α∈[0,1],使对 i≠j(i,j∈N)均有｜aiiajj｜≥(Λi,Λj)α(SiSj)1-α,则称A为α 双对角占优矩阵.本文利用矩阵回路给出了A为H阵的新的判定准则,即A=(aij)∈Cn×n,若对任意i∈N和v∈S(A)有:ΠΛi)α(ΠSi)1-α,α∈[0,1],则A为H阵,改进和推广了已有的结果.｜aii｜>(Πi∈νi∈νi∈ν dc.description.abstract Let A=(aij)∈Cn×n.If these exists α∈for all i≠j(i,j∈N),we have |aiiajj|≥(ΛiΛj)α(SiSj)1-α,and then A is an αdoubly diagonally dominant matrix. In this paper,we obtain a new criterion for Hmatrices in terms of matrix circuit,i.e. if for any i∈N and v∈S(A),we have ∏i∈υ|aii|>(∏i∈υΛi)α(∏i∈υSi)1-α,α∈,and then A is an Hmatrix, improving and generalizing the related results.  dc.description.sponsorship 国家自然科学基金(10271099)资助 dc.language.iso zh_CN dc.subject 回路 dc.subject α-对角占优 dc.subject α-双对角占优 dc.subject H矩阵 dc.subject circuit dc.subject α-diagonally dominant dc.subject α-doublly diagonally dominant dc.subject Non-singular H-matrix dc.title α-双对角占优与H矩阵的判定 dc.title.alternative α-Doublly Diagonally Dominant and the Criterions for H-Matrices dc.type Article
﻿