Show simple item record

dc.contributor.author祝辉林
dc.date.accessioned2017-11-14T02:51:03Z
dc.date.available2017-11-14T02:51:03Z
dc.date.issued2008-07-15
dc.identifier.citation厦门大学学报(自然科学版),2008,(04):10-16
dc.identifier.issn0438-0479
dc.identifier.otherXDZK200804003
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/154804
dc.description.abstract用初等方法证明了等幂和Sk(n)在k=0,1,3,5时取得无穷多个完全平方数,在k=2仅当n=1,24时取得平方数12和702,在k=4,6,7时仅取得唯一的平方数(1,1),同时用初等方法证明了一些相关不定方程的结果.
dc.description.abstractIn this paper,by using elementary method we proved that,in the sums of power of the first n integers,denoted as Sk(n)=1k+…+nk,there are infinite perfect squares when k=0,1,3,5;while k=2,there are two perfect squares 12 and 702 corresponding to n=1,24;in k=4,6,7,there are only one perfect square 12.Simultaneously,we prove some results of related indefinite equations by elementary method.
dc.description.sponsorship厦门大学专项基金(0000X08103)资助
dc.language.isozh_CN
dc.subject等幂和
dc.subject不定方程
dc.subject初等方法
dc.subjectpower sums
dc.subjectdiophantine equation
dc.subjectelementary method
dc.title某些等幂和中的完全平方数
dc.title.alternativeOn Perfect Squares of the Sums of Power of the First n Integers
dc.typeArticle


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record