dc.contributor.author 黄玉笙 dc.contributor.author 林良裕 dc.date.accessioned 2017-11-14T02:51:03Z dc.date.available 2017-11-14T02:51:03Z dc.date.issued 2003-09-30 dc.identifier.citation 厦门大学学报(自然科学版),2003,(05):25-27 dc.identifier.issn 0438-0479 dc.identifier.other XDZK200305006 dc.identifier.uri https://dspace.xmu.edu.cn/handle/2288/154802 dc.description.abstract 设D是Cn空间中具有C(1)边界 D的有界域,本文利用D上一个局部有限的可数强拟凸开复盖,定义了D上一个新的局部全纯的σ点有限的单位分解,建立了D上一个更一般的具有离散局部全纯核的Cauchy积分公式并获得D上 方程的具有离散核的解的积分表示. dc.description.abstract Let D be a bounded domain with C(1) boundary in Cn. The authors use the locally finite open coverring of the countable strictly pseudoconvex to define a new partitions of unity of σ point finite local holomorphic, constructed a generalized Cauchy integral formula with discrete local holomorphic kernel on the bounded domain D and applied it to solving the equation. dc.description.sponsorship 部分国家天元数学基金(TY10126033)资助 dc.language.iso zh_CN dc.subject 有界域 dc.subject 离散核 dc.subject 积分公式 dc.subject 方程 dc.subject bounded domain dc.subject discrete kernel dc.subject integral formula dc.subject ■-equation dc.title 有界域上具有离散核的Cauchy公式和-方程 dc.title.alternative The Cauchy Formula with Discrete Kernel and ■-Equation on a Bounded Domain dc.type Article
﻿