Show simple item record

dc.contributor.author黄玉笙
dc.contributor.author林良裕
dc.date.accessioned2017-11-14T02:51:03Z
dc.date.available2017-11-14T02:51:03Z
dc.date.issued2003-09-30
dc.identifier.citation厦门大学学报(自然科学版),2003,(05):25-27
dc.identifier.issn0438-0479
dc.identifier.otherXDZK200305006
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/154802
dc.description.abstract设D是Cn空间中具有C(1)边界 D的有界域,本文利用D上一个局部有限的可数强拟凸开复盖,定义了D上一个新的局部全纯的σ点有限的单位分解,建立了D上一个更一般的具有离散局部全纯核的Cauchy积分公式并获得D上 方程的具有离散核的解的积分表示.
dc.description.abstractLet D be a bounded domain with C(1) boundary in Cn. The authors use the locally finite open coverring of the countable strictly pseudoconvex to define a new partitions of unity of σ point finite local holomorphic, constructed a generalized Cauchy integral formula with discrete local holomorphic kernel on the bounded domain D and applied it to solving the equation.
dc.description.sponsorship部分国家天元数学基金(TY10126033)资助
dc.language.isozh_CN
dc.subject有界域
dc.subject离散核
dc.subject积分公式
dc.subject方程
dc.subjectbounded domain
dc.subjectdiscrete kernel
dc.subjectintegral formula
dc.subject■-equation
dc.title有界域上具有离散核的Cauchy公式和-方程
dc.title.alternativeThe Cauchy Formula with Discrete Kernel and ■-Equation on a Bounded Domain
dc.typeArticle


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record