Show simple item record

dc.contributor.author郭广报
dc.date.accessioned2017-11-14T02:51:02Z
dc.date.available2017-11-14T02:51:02Z
dc.date.issued2008-05-15
dc.identifier.citation厦门大学学报(自然科学版),2008,(03):10-13
dc.identifier.issn0438-0479
dc.identifier.otherXDZK200803003
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/154794
dc.description.abstract近来,Marek等第一次将Schwarz方法引入了奇异线性方程组的求解问题.然而,这种方法对于分裂阵和迭代阵的要求过于严格.本文在此基础上,利用Drazin逆给出了拟非负分裂的定义.对Markov链分裂阵的要求由非负型分裂推广到拟非负型分裂,证明了Markov链加性Schwarz迭代,诱导分离及其粗网格校正的半收敛性,扩充了Schwarz迭代方法的理论,使这种方法更具实用性.
dc.description.abstractUp to now,singular systems are analyzed using Schwarz methods by Marek,and it is the first time that Markov chains problems are studied in that context.In this paper,the author gives the definition of quasi-nonnegative splittings.Splitting matrixs vary from nonnegative splittings to quasi-nonnegative splittings.It is shown that the semiconvergence of the additive Schwarz method,induced splitting and corse grid corrections in the case.
dc.language.isozh_CN
dc.subjectSchwarz方法
dc.subjectMarkov链
dc.subject拟非负型分裂
dc.subjectSchwarz method
dc.subjectMarkov chains
dc.subjectquasi-nonnegative splittings
dc.titleMarkov链平稳分布的迭代解法
dc.title.alternativeIterative Methods for Solving the Stationary Distribution of Markov Chains
dc.typeArticle


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record