Show simple item record

dc.contributor.author程庆进
dc.date.accessioned2017-11-14T02:50:59Z
dc.date.available2017-11-14T02:50:59Z
dc.date.issued2007-09-15
dc.identifier.citation厦门大学学报(自然科学版),2007,(05):19-21
dc.identifier.issn0438-0479
dc.identifier.otherXDZK200705004
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/154766
dc.description.abstract超能和有限表示是研究超自反Bananch空间的两个重要工具,而James表示定理是建立超自反Banach空间有限树特征的桥梁.本文首先引入了Banach空间中两集合之间有限表示的概念,其可视作两空间之间有限表示概念的推广,然后利用超能和推广的有限表示将空间上的James有限表示定理推广到非空凸子集上.
dc.description.abstractUltrapower and finite representation are two important tools to study super-reflexive Banach spaces,and James finite representability theorem is the bridge to build the finite tree characterization of super-reflexive spaces.This paper first introduces a notion of finite representation between two sets,which is a generalized setting to the notion between two spaces; then in terms of ultrapower and generalized finite representation,the paper generates James finite representability theorem to a general nonempty convex set.
dc.language.isozh_CN
dc.subject超能
dc.subjectBanach空间
dc.subjectultrapower
dc.subjectBanach space
dc.titleJames有限表示定理的推广
dc.title.alternativeThe Generalization of James Finite Representability Theorem
dc.typeArticle


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record