Show simple item record

dc.contributor.author李锦堂
dc.date.accessioned2017-11-14T02:50:55Z
dc.date.available2017-11-14T02:50:55Z
dc.date.issued2003-07-15
dc.identifier.citation数学学报,2003,(04):189-192
dc.identifier.issn0583-1431
dc.identifier.otherSXXB200304024
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/154734
dc.description.abstract设M~n(n≥3)是R~(n+1)中紧致凸超曲面,本文证明了:若F″≤0且M的n个主曲率λ_i满足0<λ_i<1/2∑_(j=1)~nλ_j,则M~n和任何紧致黎曼流形之间的稳定F-调和映射必为常值映射.
dc.description.abstractLet Mn (n ≥ 3) be a compact convex hypersurface in Rn+1. In this paper, we prove that if F" ≤ 0 and the principal curvature λi of M satisfies: , (?)i m then there is no rionconstant stable F-harmonic map between M and a compact Riemannian manifold.
dc.description.sponsorship福建省自然科学基金(F0110011);; 厦门大学科研基金(20012002)
dc.language.isozh_CN
dc.subjectF-调和映射
dc.subject不稳定性
dc.subject正拼挤流形
dc.subjectF-harmonic maps
dc.subjectUnstability
dc.subjectPositively curved manifolds
dc.title正拼挤流形的F-调和映射
dc.title.alternativeF-Harmonic Maps for Positively Curved Manifolds
dc.typeArticle


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record