• 中文
    • English
  • English 
    • 中文
    • English
  • Login
View Item 
  •   DSpace Home
  • 数学科学学院
  • 数学科学-已发表论文
  • View Item
  •   DSpace Home
  • 数学科学学院
  • 数学科学-已发表论文
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

正拼挤流形的F-调和映射
F-Harmonic Maps for Positively Curved Manifolds

Thumbnail
Full Text
正拼挤流形的F-调和映射.pdf (198.8Kb)
Date
2003-07-15
Author
李锦堂
Collections
  • 数学科学-已发表论文 [2662]
Show full item record
Abstract
设M~n(n≥3)是R~(n+1)中紧致凸超曲面,本文证明了:若F″≤0且M的n个主曲率λ_i满足0<λ_i<1/2∑_(j=1)~nλ_j,则M~n和任何紧致黎曼流形之间的稳定F-调和映射必为常值映射.
 
Let Mn (n ≥ 3) be a compact convex hypersurface in Rn+1. In this paper, we prove that if F" ≤ 0 and the principal curvature λi of M satisfies: , (?)i m then there is no rionconstant stable F-harmonic map between M and a compact Riemannian manifold.
 
Citation
数学学报,2003,(04):189-192
URI
https://dspace.xmu.edu.cn/handle/2288/154734

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies