Show simple item record

dc.contributor.author蔡新
dc.date.accessioned2017-11-14T02:50:54Z
dc.date.available2017-11-14T02:50:54Z
dc.date.issued2007-01-15
dc.identifier.citation厦门大学学报(自然科学版),2007,(01):24-26
dc.identifier.issn0438-0479
dc.identifier.otherXDZK200701004
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/154728
dc.description.abstract考虑带大Reynolds数问题的对流-扩散方程.近年来Shishkin网格法适合这类总是的求解,收敛阶为O(N-1lnN).提出高精度方法,首先解析解被分解为光滑部分和奇性部分,按Shishkin过渡点进行不等距网格剖分.光滑部分使用了Runge-Kutta方法;对于奇性部分,除了采用指数拟合方法外,还结合零逼近技巧,这样构造的混合方法是高精度的.最后本文给出数值例子以说明理论结果的正确性.
dc.description.abstractIn this paper convection diffusion problem with big Reynolds number is considered.Shishkin′s method has become popular for this kind of problem in recent years.It is uniformly convergent with respect to big Reynolds number in order O(N~(-1)lnN).In this paper,high accurate numerical method is presented by mixed method.Firstly,the analytic solution is decomposed into the smooth component and the singular component.Secondly,the non-equidistant mesh partition according to Shishkin′s transition point is considered.Thirdly,Runge-Kutta method is applied for the smooth component.For the singular component,the exponentially fitted difference scheme with zero approximate techinique is used.The new method is shown that it is a high accurate method.Finally,numerical result is given,which is in agreement with the theoretical result.
dc.description.sponsorship福建省自然科学基金(2006J0040);; 集美大学博士科研经费(ZQ2006034)资助
dc.language.isozh_CN
dc.subject奇摄动
dc.subject对流扩散
dc.subject数值方法
dc.subjectsingular perturbation
dc.subjectconvection diffusion problem
dc.subjectnumerical solution
dc.title奇摄动问题的一个高精度方法
dc.title.alternativeA High Accurate Method for Singular Perturbation Problem
dc.typeArticle


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record