• 中文
    • English
  • English 
    • 中文
    • English
  • Login
View Item 
  •   DSpace Home
  • 数学科学学院
  • 数学科学-已发表论文
  • View Item
  •   DSpace Home
  • 数学科学学院
  • 数学科学-已发表论文
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

R~n空间中单位球面的极小球覆盖
Minimal Ball-covering of the Unit Spheres in R~n

Thumbnail
Full Text
R~n空间中单位球面的极小球覆盖.pdf (140.5Kb)
Date
2006-09-30
Author
施慧华
张皛晶
Collections
  • 数学科学-已发表论文 [2662]
Show full item record
Abstract
考虑如下问题:对一个Banach空间X,已知其单位球面SX可以被n+1个不含原点为其内点的闭球所覆盖,则其最小覆盖半径是多少?本文针对一特殊空间Rn,首先证明了在Rn中,若有一点集{xi}im=1满足一定条件,则可给出一特殊的球覆盖,且此覆盖的半径即为最小半径.进一步本文还给出了在Rn中若任意给定r≥32,可找到一个以r为覆盖半径的球覆盖,且此覆盖的势为极小的.
 
Considering the following problem: for a Banach space X with dimX=n,it has already known that the sphere of the unit ball of X can be covered by a ball-covering of n+1 closed balls not containing the origin in its interior,then what is its smallest radius? This article first proves that there exists a specific ball-covering with the smallest radius in R~n if a set {x_i}~m_(i=1) satisfying some given term,then presents a minimal ball-covering with arbitrary given r≥32 as its radius.
 
Citation
厦门大学学报(自然科学版),2006,(05):35-37
URI
https://dspace.xmu.edu.cn/handle/2288/154707

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies