dc.contributor.author 欧见平 dc.date.accessioned 2017-11-14T02:50:51Z dc.date.available 2017-11-14T02:50:51Z dc.date.issued 2003-06-30 dc.identifier.citation 内蒙古师范大学学报(自然科学汉文版),2003,(02):9-13 dc.identifier.issn 1001-8735 dc.identifier.other NMSB200302002 dc.identifier.uri https://dspace.xmu.edu.cn/handle/2288/154701 dc.description.abstract 限制边割将连通图分离成不含孤立点的不连通图 ,如果最小限制边割只能分离孤立边 ,则称图G是超级限制边连通的 .证明了如果k >|G|/ 2 +1,那么k正则连通图G是超级限制边连通的 ,k的下界在一定程度上是不可改进的 . dc.description.abstract Restricted edge cut separates a connected graph into a disconnected one without isolated vertex.Graph G is super restricted edge connected if no subgraph but an isolated edge can be separated by any minimum restricted edge cut.It is proved that k regular connected graph G is super restricted edge connected if k>|G|/2+1 . The lower bound on k is exemplified to be sharp to some extent. dc.description.sponsorship ProjectSupportedbytheNationalNaturalScienceFoundationofChina(199710 71);; ProjectSupportedbytheNationalNaturalScienceFoundationofZhangzhouNormalCollege dc.language.iso zh_CN dc.subject 图 dc.subject 边连通度 dc.subject 断片 dc.subject graph dc.subject edge connectivity dc.subject fragment dc.subject restricted dc.title 优化正则图的限制边连通性的最小度条件(英文) dc.title.alternative Minimum Degree Condition for the Optimization of Restricted Edge Connectivity of Regular Graphs dc.type Article
﻿