Show simple item record

dc.contributor.author倪志仁
dc.date.accessioned2017-11-14T02:50:39Z
dc.date.available2017-11-14T02:50:39Z
dc.date.issued2006-07-30
dc.identifier.citation厦门大学学报(自然科学版),2006,(04):16-19
dc.identifier.issn0438-0479
dc.identifier.otherXDZK200604002
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/154696
dc.description.abstract对于非Newton多方渗流方程ut=div(|um|p-2 um),(m≥1,p≥2)Cauchy问题解的惟一性,本文在给出了一般意义上的弱解定义之后,在假设初值满足0≤u0(x)∈L1(Rn)∩L∞(Rn)的条件下,得到了一个新的结果.在证明中首先应用了Steklov均值方法得到一个关键恒等式,其次应用partial summation技巧和处理关于空间和时间双变量的Kruzhkov方法论证了一个比较定理,最后证明了Cauchy问题弱解的惟一性.
dc.description.abstractThe Cauchy problem for the non-newton polypropic filtration equation u_t=div(|u~m|~(p-2)u~m) is considered in this paper,where m≥1,p≥2.After giving the definition of the weak solution of the equation above,and assuming that 0≤u_0(x)∈L~1(R~n)∩L~∞(R~n) a new result about the uniqueness of weak solutions of this equation is obtained.The main tools used in the proofs are Steklov mean value method,partial summation skill and Kruzhkov′s method of doubling variables both in space and time.A comparison principle is obtained and the uniqueness of weak solutions of the Cauchy problem is proved.
dc.language.isozh_CN
dc.subject非Newton多方渗流方程
dc.subject弱解
dc.subjectCauchy问题
dc.subjectpolypropic filtration equations
dc.subjectweak solution
dc.subjectCauchy problem
dc.title非Newton多方渗流方程Cauchy问题弱解的惟一性
dc.title.alternativeUniqueness of Weak Solutions of the Cauchy Problem for a Non-Newton Polypropic Filtration Equations
dc.typeArticle


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record