• 中文
    • English
  • English 
    • 中文
    • English
  • Login
View Item 
  •   DSpace Home
  • 数学科学学院
  • 数学科学-已发表论文
  • View Item
  •   DSpace Home
  • 数学科学学院
  • 数学科学-已发表论文
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

数值求解Lévy-Feller扩散方程
NUMERICAL SOLUTION FOR THE LEVY-FELLER DIFFUSION EQUATION

Thumbnail
Full Text
数值求解Lévy-Feller扩散方程.pdf (2.169Mb)
Date
2005-12-30
Author
章红梅
刘发旺
Collections
  • 数学科学-已发表论文 [2662]
Show full item record
Abstract
<正>1 引言在物理化学领域经常会出现微粒的不规则扩散现象,许多学者试图用某种数学模型来解释此现象.Gorenflo等[1]提出了一种有效的数学模型,即用阶数为α∈(0,2]且含有偏斜度θ(|θ|≤min{α,2-α})的Riesz-Feller位势Dθα代替标准扩散方程中的二阶空间导数.算子Dθα描述的扩散现象就称作Levy-Feller扩散,而含此算子的的方程就称为
 
In this paper, we consider the space fractional Levy-Feller diffusion equation with Riesz-Feller potential. By using the equivalent of fractional order differential operators, an new finite difference method for discreting the above diffusion equation is proposed. The stability and convergence of the method are analysed. Finally, a numerical example is provided to show that the finite difference method for solving FPDE is an effective method.
 
Citation
高等学校计算数学学报,2005,(S1):246-249
URI
https://dspace.xmu.edu.cn/handle/2288/154660

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies