Show simple item record

dc.contributor.authorChen Zhen
dc.contributor.authorLu LinZhang
dc.contributor.author卢琳璋
dc.date.accessioned2013-03-28T07:14:05Z
dc.date.available2013-03-28T07:14:05Z
dc.date.issued2012-06
dc.identifier.citationSCIENCE CHINA-MATHEMATICS,2012,55(6):1281-1292zh_CN
dc.identifier.issn1674-7283
dc.identifier.urihttp://dx.doi.org/10.1007/s11425-012-4363-5
dc.identifier.uriWOS:000304616900015
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/15402
dc.description.abstractThe preconditioned iterative solvers for solving Sylvester tensor equations are considered in this paper. By fully exploiting the structure of the tensor equation, we propose a projection method based on the tensor format, which needs less flops and storage than the standard projection method. The structure of the coefficient matrices of the tensor equation is used to design the nearest Kronecker product (NKP) preconditioner, which is easy to construct and is able to accelerate the convergence of the iterative solver. Numerical experiments are presented to show good performance of the approaches.zh_CN
dc.description.sponsorshipNational Natural Science Foundation of China [10961010]; Science and Technology Foundation of Guizhou Province [LKS[2009]03]zh_CN
dc.language.isoenzh_CN
dc.publisherSCIENCE PRESSzh_CN
dc.subjectSylvester tensor equationzh_CN
dc.subjectSchur decompositionzh_CN
dc.subjectprojection methodzh_CN
dc.subjectnearest Kronecker product (NKP)zh_CN
dc.subjectpreconditioningzh_CN
dc.titleA projection method and Kronecker product preconditioner for solving Sylvester tensor equationszh_CN
dc.typeArticlezh_CN


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record