Martensite stabilization and thermal cycling stability of two-phase NiMnGa-based high-temperature shape memory alloys
Date
2012-06Author
Yang, Shuiyuan
Liu, Yong
Wang, Cuiping
王翠萍
Liu, Xingjun
刘兴军
Collections
- 材料学院-已发表论文 [2404]
Abstract
The martensite stabilization and thermal cycling stability of four types of two-phase NiMnGa-based high-temperature shape memory alloy, including Ni56+xMn25Ga19-x (x = 0, 1, 2, 3, 4), Ni56Mn25-yFeyGa19 (y = 4, 8, 9, 12, 16), Ni56Mn25-zCozGa19 (z = 4, 6, 8) and Ni56Mn25-xCuwGa19 (w = 2, 4, 8) alloys, were investigated. It is found that the martensite stabilization is closely related to the strength of the alloy and the volume fraction of 'y phase; and increases as the alloy strength decreases. It is also found that in Ni56Mn25-yFe3Ga19 alloys, with increasing Fe content to 12 and 16 at.%, the volume fraction of gamma phase increases and the martensite stabilization decreases. The thermal cycling stability differs among different alloy systems and is related to the microstructural changes during thermal cycling and to the strength of the gamma phase. Poor thermal cycling stability is observed in Ni56+xMn25Ga19-x (x > 0), Ni56Mn25-zCozGa19 and Ni56Mn25-xCuwGa19 alloys due to the formation of the ordered gamma' phase and the high strength of the gamma phase. Results further show that Fe addition to Ni56Mn25Ga19 alloy can broaden the (bcc + gamma) two-phase region and shift it to the Ni-Ga and Ni-Mn sides, hence stabilizing the two-phase region to lower temperatures. These effects can retard the formation of the ordered gamma' phase in the Ni56Mn25-yFeyGa19 system during thermal cycling, thus leading to good thermal cycling stability. (c) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Citation
ACTA MATERIALIA,2012,60(10):4255-4267URI
http://dx.doi.org/10.1016/j.actamat.2012.04.029WOS:000306385200022
https://dspace.xmu.edu.cn/handle/2288/15338