• 中文
    • English
  • English 
    • 中文
    • English
  • Login
View Item 
  •   DSpace Home
  • 材料学院
  • 材料学院-已发表论文
  • View Item
  •   DSpace Home
  • 材料学院
  • 材料学院-已发表论文
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Martensite stabilization and thermal cycling stability of two-phase NiMnGa-based high-temperature shape memory alloys

Thumbnail
Full Text
Martensite stabilization and thermal cycling stability of two-phase NiMnGa-based high-temperature shape memory alloys.htm (413bytes)
Date
2012-06
Author
Yang, Shuiyuan
Liu, Yong
Wang, Cuiping
王翠萍
Liu, Xingjun
刘兴军
Collections
  • 材料学院-已发表论文 [2404]
Show full item record
Abstract
The martensite stabilization and thermal cycling stability of four types of two-phase NiMnGa-based high-temperature shape memory alloy, including Ni56+xMn25Ga19-x (x = 0, 1, 2, 3, 4), Ni56Mn25-yFeyGa19 (y = 4, 8, 9, 12, 16), Ni56Mn25-zCozGa19 (z = 4, 6, 8) and Ni56Mn25-xCuwGa19 (w = 2, 4, 8) alloys, were investigated. It is found that the martensite stabilization is closely related to the strength of the alloy and the volume fraction of 'y phase; and increases as the alloy strength decreases. It is also found that in Ni56Mn25-yFe3Ga19 alloys, with increasing Fe content to 12 and 16 at.%, the volume fraction of gamma phase increases and the martensite stabilization decreases. The thermal cycling stability differs among different alloy systems and is related to the microstructural changes during thermal cycling and to the strength of the gamma phase. Poor thermal cycling stability is observed in Ni56+xMn25Ga19-x (x > 0), Ni56Mn25-zCozGa19 and Ni56Mn25-xCuwGa19 alloys due to the formation of the ordered gamma' phase and the high strength of the gamma phase. Results further show that Fe addition to Ni56Mn25Ga19 alloy can broaden the (bcc + gamma) two-phase region and shift it to the Ni-Ga and Ni-Mn sides, hence stabilizing the two-phase region to lower temperatures. These effects can retard the formation of the ordered gamma' phase in the Ni56Mn25-yFeyGa19 system during thermal cycling, thus leading to good thermal cycling stability. (c) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Citation
ACTA MATERIALIA,2012,60(10):4255-4267
URI
http://dx.doi.org/10.1016/j.actamat.2012.04.029
WOS:000306385200022
https://dspace.xmu.edu.cn/handle/2288/15338

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies