Show simple item record

dc.contributor.authorWang, Weifan
dc.contributor.authorKong, Jiangxu
dc.contributor.authorZhang, Lianzhu
dc.contributor.author张莲珠
dc.date.accessioned2013-01-06T07:24:15Z
dc.date.available2013-01-06T07:24:15Z
dc.date.issued2012-10-26
dc.identifier.citationTHEORETICAL COMPUTER SCIENCE,2012(457):158-165zh_CN
dc.identifier.issn0304-3975
dc.identifier.urihttp://dx.doi.org/10.1016/j.tcs.2012.07.011
dc.identifier.uriWOS:000309098600014
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/14368
dc.description.abstractLet G be a connected graph with n >= 2 vertices. Suppose that a fire breaks out at a vertex v of G. A firefighter starts to protect vertices. At each time interval, the firefighter protects two vertices not yet on fire. At the end of each time interval, the fire spreads to all the unprotected vertices that have a neighbour on fire. Let sn(2)(v) denote the maximum number of vertices in G that the firefighter can save when a fire breaks out at vertex v. The surviving rate rho(2)(G) of G is defined to be Sigma(v is an element of V(G)) sn(2)(v)/n(2), which is the average proportion of saved vertices. In this paper, we show that if G is a planar graph with n >= 2 vertices and without 4-cycles, then rho(2)(G) > 1/76. (C) 2012 Elsevier B.V. All rights reserved.zh_CN
dc.description.sponsorshipNSFC [11071223, 11171279]; ZJNSF [Z6090150]; ZJIP [T200905]; ZSDZZZZXK13; IP-OCNS-ZJNUzh_CN
dc.language.isoenzh_CN
dc.publisherELSEVIER SCIENCE BVzh_CN
dc.subjectFirefighter problemzh_CN
dc.subject2-surviving ratezh_CN
dc.subjectPlanar graphzh_CN
dc.subjectCyclezh_CN
dc.titleThe 2-surviving rate of planar graphs without 4-cycleszh_CN
dc.typeArticlezh_CN


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record