• 中文
    • English
  • English 
    • 中文
    • English
  • Login
View Item 
  •   DSpace Home
  • 数学科学学院
  • 数学科学-已发表论文
  • View Item
  •   DSpace Home
  • 数学科学学院
  • 数学科学-已发表论文
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The 2-surviving rate of planar graphs without 4-cycles

Thumbnail
Full Text
The 2-surviving rate of planar graphs without 4-cycles.htm (413bytes)
Date
2012-10-26
Author
Wang, Weifan
Kong, Jiangxu
Zhang, Lianzhu
张莲珠
Collections
  • 数学科学-已发表论文 [2662]
Show full item record
Abstract
Let G be a connected graph with n >= 2 vertices. Suppose that a fire breaks out at a vertex v of G. A firefighter starts to protect vertices. At each time interval, the firefighter protects two vertices not yet on fire. At the end of each time interval, the fire spreads to all the unprotected vertices that have a neighbour on fire. Let sn(2)(v) denote the maximum number of vertices in G that the firefighter can save when a fire breaks out at vertex v. The surviving rate rho(2)(G) of G is defined to be Sigma(v is an element of V(G)) sn(2)(v)/n(2), which is the average proportion of saved vertices. In this paper, we show that if G is a planar graph with n >= 2 vertices and without 4-cycles, then rho(2)(G) > 1/76. (C) 2012 Elsevier B.V. All rights reserved.
Citation
THEORETICAL COMPUTER SCIENCE,2012(457):158-165
URI
http://dx.doi.org/10.1016/j.tcs.2012.07.011
WOS:000309098600014
https://dspace.xmu.edu.cn/handle/2288/14368

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies