dc.contributor.author 顾书龙 dc.contributor.author 计国君 dc.contributor.author 张宏彬 dc.contributor.author 刘东生 dc.date.accessioned 2017-11-14T01:08:46Z dc.date.available 2017-11-14T01:08:46Z dc.date.issued 2004-06-20 dc.identifier.citation 东南大学学报(自然科学版),2004,(03):132-136 dc.identifier.issn 1001-0505 dc.identifier.other DNDX200403031 dc.identifier.uri https://dspace.xmu.edu.cn/handle/2288/139863 dc.description.abstract 研究受约束Vacco系统的Noether对称性 .基于受约束Vacco系统在r 参数有限变换群Gr 的无限小广义准对称变换下的不变性 ,给出了受单面约束的Vacco系统的Noether定理及其逆定理 .受双面约束的Vacco系统的Neother定理为该定理的推论 .最后给出一个算例说明了结果的应用 . dc.description.abstract The Neother symmetry for Vacco systems with constraints is studied. Noether's theorem and its inverse theorem of Vacco systems with unilateral constraints are given,which are based upon the invariant properties by introducing the generalized quasi-symmetry of the infinitesimal transformation for the transformation group G r of r -parameter. And Noether's theorem dealing with the Vacco system of bilateral constraints is its corollary. An example to illustrate the application of the result is given. dc.description.sponsorship 安徽省高校自然科学基金资助项目 (2 0 0 2kj2 3 0,2 0 0 4kj2 94) dc.language.iso zh_CN dc.subject 分析力学 dc.subject 单面约束Vacco系统 dc.subject 守恒量 dc.subject 对称性 dc.subject Noether定理 dc.subject analytical mechanics dc.subject Vacco systems with unilateral constraints dc.subject conserved quantity dc.subject symmetry dc.subject Noether's theorem dc.title 受约束Vacco系统的几个Noether定理 dc.title.alternative Several Noether's theorem of Vacco systems with constraints dc.type Article
﻿