Show simple item record

dc.contributor.author方匡南
dc.contributor.author吴见彬
dc.contributor.author朱建平
dc.contributor.author谢邦昌
dc.date.accessioned2016-05-17T03:21:11Z
dc.date.available2016-05-17T03:21:11Z
dc.date.issued2011
dc.identifier.citation统计与信息论坛,2011,(3):33-39
dc.identifier.issn1007-3116
dc.identifier.otherTJLT201103007
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/112057
dc.description.abstract随机森林(rf)是一种统计学习理论,它是利用bOOTSrAP重抽样方法从原始样本中抽取多个样本,对每个bOOTSrAP样本进行决策树建模,然后组合多棵决策树的预测,通过投票得出最终预测结果。它具有很高的预测准确率,对异常值和噪声具有很好的容忍度,且不容易出现过拟合,在医学、生物信息、管理学等领域有着广泛的应用。为此,介绍了随机森林原理及其有关性质,讨论其最新的发展情况以及一些重要的应用领域。
dc.description.abstractRandom Forests is a statistical learning theory,using bootsrap re-sampling method form sample sets,and then combining the tree predictors by majority voting so that each tree is grown using a new bootstrap training set.It is widely applied in medicine,bioinformatics,economics and other fields,because of its high prediction accuracy,good tolerance of noisy data,and the law of large numbers they do not overfit.In this paper we first introduce the concept of random forest and the latest research,then provide some important aspects of applications in economics,and a summary is given in the final section.
dc.description.sponsorship中央高校基本科研业务费专项资金《基于数据挖掘的数据质量管理研究》(2010221040);国家统计局重点项目《金融风险中的统计方法》(2009LZ045)
dc.language.isozh_CN
dc.subject随机森林
dc.subject分位数回归森林
dc.subject生存回归森林
dc.subject应用
dc.subjectRandom Forests
dc.subjectQuantile Regression Forests
dc.subjectSurvival Regression Forests
dc.subjectapplication
dc.title随机森林方法研究综述
dc.title.alternativeA Review of Technologies on Random Forests
dc.typeArticle


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record